Publication

A discounted recursive logit model for dynamic gridlock network analysis

Yuki Oyama
2017
Article
Résumé

Emerging sensing technologies such as probe vehicles equipped with Global Positioning System (GPS) devices on board provide us real-time vehicle trajectories. They are helpful for the understanding of the cases that are significant but difficult to observe because of the infrequency, such as gridlock networks. On the premise of this type of emerging technology, this paper propose a sequential route choice model that describes route choice behavior, both in ordinary networks, where drivers acquire spatial knowledge of networks through their experiences, and in extraordinary networks, which are situations that drivers rarely experience, and applicable to real-time traffic simulations. In extraordinary networks, drivers do not have any experience or appropriate information. In such a context, drivers have little spatial knowledge of networks and choose routes based on dynamic decision making, which is sequential and somewhat forward-looking. In order to model these decision-making dynamics, we propose a discounted recursive logit model, which is a sequential route choice model with the discount factor of expected future utility. Through illustrative examples, we show that the discount factor reflects drivers decision-making dynamics, and myopic decisions can confound the network congestion level. We also estimate the parameters of the proposed model using a probe taxis trajectory data collected on March 4, 2011 and on March 11, 2011, when the Great East Japan Earthquake occurred in the Tokyo Metropolitan area. The results show that the discount factor has a lower value in gridlock networks than in ordinary networks.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.