Publication

A state-space approach to adaptive RLS filtering

Ali H. Sayed
1994
Article
Résumé

Adaptive filtering algorithms fall into four main groups: recursive least squares (RLS) algorithms and the corresponding fast versions; QR- and inverse QR-least squares algorithms; least squares lattice (LSL) and QR decomposition-based least squares lattice (QRD-LSL) algorithms; and gradient-based algorithms such as the least-mean square (LMS) algorithm. Our purpose in this article is to present yet another approach, for the sake of achieving two important goals. The first one is to show how several different variants of the recursive least-squares algorithm can be directly related to the widely studied Kalman filtering problem of estimation and control. Our second important goal is to present all the different versions of the RLS algorithm in computationally convenient square-root forms: a prearray of numbers has to be triangularized by a rotation, or a sequence of elementary rotations, in order to yield a postarray of numbers. The quantities needed to form the next prearray can then be read off from the entries of the postarray, and the procedure can be repeated; the explicit forms of the rotation matrices are not needed in most cases.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.