En algèbre linéaire, la décomposition d'une matrice en éléments propres est la factorisation de la matrice en une forme canonique où les coefficients matriciels sont obtenus à partir des valeurs propres et des vecteurs propres. Un vecteur non nul v à N lignes est un vecteur propre d'une matrice carrée A à N lignes et N colonnes si et seulement si il existe un scalaire λ tel que : où λ est appelé valeur propre associée à v. Cette dernière équation est appelée « équation aux valeurs propres ». Ces valeurs propres sont les solutions de l'équation : On appelle p(λ) le polynôme caractéristique de A, et cette équation, l'équation caractéristique, est une équation polynomiale de degré N dont λ est l'inconnue. Cette équation admet Nλ solutions distinctes, avec 1 ≤ Nλ ≤ N. L'ensemble des solutions, i. e. des valeurs propres, est appelé le spectre de A. On peut factoriser p : avec Pour chaque valeur propre λi, on a une équation particulière : qui admet mi vecteurs solutions linéairement indépendants, formant une base de l'espace de toutes les solutions (le sous-espace propre associé à la valeur propre λi). Il est important de remarquer que cette multiplicité géométrique mi peut être égale ou pas à la multiplicité algébrique ni, mais qu'on a toujours : 1 ≤ mi ≤ ni. Le cas le plus simple est évidemment mi = ni = 1. Le nombre de vecteurs propres indépendants de la matrice, noté ici Nv, est égal à la somme : Les vecteurs propres peuvent alors être indexés par leurs valeurs propres respectives, avec un double indice : on appellera alors vi,j le j-ième vecteur propre associé à la i-ième valeur propre. Les vecteurs propres peuvent aussi être notés plus simplement, avec un seul indice : vk, avec k = 1, 2, ... , Nv. Soit A une matrice carrée (N lignes et N colonnes) admettant N vecteurs propres linéairement indépendants, Alors, A peut s'écrire sous la forme : Où la matrice de passage Q est une matrice carrée (à N lignes et N colonnes) dont la i-ième colonne est le vecteur propre de A et Λ est la matrice diagonale dont les coefficients diagonaux sont les valeurs propres, i.
,
, ,