Phase-shift keyingLe phase-shift keying (ou PSK, soit « modulation par changement de phase ») désigne une famille de formes de modulations numériques qui ont toutes pour principe de véhiculer de l'information binaire via la phase d'un signal de référence (porteuse), et exclusivement par ce biais. Comme pour toute technique de modulation numérique, la phase en question ne peut prendre qu'un nombre fini de valeurs. Chacune de ces valeurs représente un unique nombre binaire, dont la taille (et donc la quantité d'information transmise) dépend du nombre de valeurs possibles pour la phase.
Simulation de phénomènesLa simulation de phénomènes est un outil utilisé dans le domaine de la recherche et du développement. Elle permet d'étudier les réactions d'un système à différentes contraintes pour en déduire les résultats recherchés en se passant d'expérimentation. Les systèmes technologiques (infrastructures, véhicules, réseaux de communication, de transport ou d'énergie) sont soumis à différentes contraintes et actions. Le moyen le plus simple d'étudier leurs réactions serait d'expérimenter, c'est-à-dire d'exercer l'action souhaitée sur l'élément en cause pour observer ou mesurer le résultat.
Boucle à phase asservieUne boucle à phase asservie, ou boucle à verrouillage de phase ou BVP (en anglais, phase-locked loop, ou PLL), est un montage électronique permettant d'asservir la phase ou la fréquence de sortie d'un système sur la phase ou la fréquence du signal d'entrée. Elle peut aussi asservir une fréquence de sortie sur un multiple de la fréquence d'entrée. L'invention de la boucle à verrouillage de phase est attribuée à un ingénieur français, Henri de Bellescize, en 1932.
Point estimationIn statistics, point estimation involves the use of sample data to calculate a single value (known as a point estimate since it identifies a point in some parameter space) which is to serve as a "best guess" or "best estimate" of an unknown population parameter (for example, the population mean). More formally, it is the application of a point estimator to the data to obtain a point estimate. Point estimation can be contrasted with interval estimation: such interval estimates are typically either confidence intervals, in the case of frequentist inference, or credible intervals, in the case of Bayesian inference.
Algorithme de recherche d'un zéro d'une fonctionUn algorithme de recherche d'un zéro d’une fonction est une méthode numérique ou un algorithme de recherche d’une valeur approchée d’un x vérifiant , pour une fonction donnée f. Ici, x est un nombre réel appelé zéro de f ou lorsque f est polynomiale, racine de f. Lorsque x est un vecteur, les algorithmes pour trouver x tel que sont généralement appelés « algorithmes de résolution numérique d'un système d'équations ». Ces algorithmes sont une généralisation des algorithmes de recherche d’un zéro d’une fonction et peuvent s’appliquer à des équations linéaires ou non linéaires.
Algorithme de ShorEn arithmétique modulaire et en informatique quantique, l’algorithme de Shor est un algorithme quantique conçu par Peter Shor en 1994, qui factorise un entier naturel N en temps O et en espace . Beaucoup de cryptosystèmes à clé publique, tels que le RSA, deviendraient vulnérables si l'algorithme de Shor était un jour implanté dans un calculateur quantique pratique. Un message chiffré avec RSA peut être déchiffré par factorisation de sa clé publique N, qui est le produit de deux nombres premiers.
Algorithme de GroverEn informatique quantique, l’algorithme de Grover est un algorithme de recherche, permettant de rechercher un ou plusieurs éléments qui répondent à un critère donné parmi éléments non classés en temps proportionnel à et avec un espace de stockage proportionnel à . Il a été découvert par Lov Grover en 1996. Dans les mêmes conditions (recherche parmi des éléments non classés), un algorithme classique ne peut faire mieux qu'une recherche dans un temps proportionnel à , en testant successivement le critère sur chaque élément.
Méthode de JacobiLa méthode de Jacobi, due au mathématicien allemand Karl Jacobi, est une méthode itérative de résolution d'un système matriciel de la forme Ax = b. Pour cela, on utilise une suite x qui converge vers un point fixe x, solution du système d'équations linéaires. On cherche à construire, pour x donné, la suite x = F(x) avec . où est une matrice inversible. où F est une fonction affine. La matrice B = MN est alors appelée matrice de Jacobi.