Domaine fréquentielLe domaine fréquentiel se rapporte à l'analyse de fonctions mathématiques ou de signaux physiques manifestant une fréquence. Alors qu'un graphe dans le domaine temporel présentera les variations dans l'allure d'un signal au cours du temps, un graphe dans le domaine fréquentiel montrera quelle proportion du signal appartient à telle ou telle bande de fréquence, parmi plusieurs bancs. Une représentation dans le domaine fréquentiel peut également inclure des informations sur le décalage de phase qui doit être appliqué à chaque sinusoïde afin de reconstruire le signal en domaine temporel.
Robustesse (statistiques)En statistiques, la robustesse d'un estimateur est sa capacité à ne pas être perturbé par une modification dans une petite partie des données ou dans les paramètres du modèle choisi pour l'estimation. Ricardo A. Maronna, R. Douglas Martin et Victor J. Yohai; Robust Statistics - Theory and Methods, Wiley Series in Probability and Statistics (2006). Dagnelie P.; Statistique théorique et appliquée. Tome 2 : Inférence statistique à une et à deux dimensions, Paris et Bruxelles (2006), De Boeck et Larcier.
Pseudorandom noiseIn cryptography, pseudorandom noise (PRN) is a signal similar to noise which satisfies one or more of the standard tests for statistical randomness. Although it seems to lack any definite pattern, pseudorandom noise consists of a deterministic sequence of pulses that will repeat itself after its period. In cryptographic devices, the pseudorandom noise pattern is determined by a key and the repetition period can be very long, even millions of digits.
Registre à décalage à rétroaction linéaireUn registre à décalage à rétroaction linéaire, ou LFSR (sigle de l'anglais linear feedback shift register), est un dispositif électronique ou logiciel qui produit une suite de bits qui peut être vue comme une suite récurrente linéaire sur le corps fini F2 à 2 éléments (0 et 1). La notion a été généralisée à n'importe quel corps fini. Réalisé électroniquement, dans le cas particulier d'une suite de 0 et de 1, c'est un registre à décalage avec rétroaction linéaire, ce qui signifie que le bit entrant est le résultat d'un OU exclusif (ou XOR) entre plusieurs bits du registre, cette opération étant également l'addition sur le corps fini F2.
Maximum length sequencevignette|Registres à décalage MLS L4 Une maximum length sequence (MLS) est une séquence binaire pseudo-aléatoire (SBPA) — c'est-à-dire une suite périodique de valeurs produite par un registre à décalage à rétroaction linéaire (LFSR) — qui explore toutes les valeurs pouvant être produites par le registre à décalage : s'il comporte bascules, valeurs sont parcourues. Le calcul effectué par le registre à décalage peut être représenté par un polynôme dont les coefficients valent 0 ou 1.
Least-squares adjustmentLeast-squares adjustment is a model for the solution of an overdetermined system of equations based on the principle of least squares of observation residuals. It is used extensively in the disciplines of surveying, geodesy, and photogrammetry—the field of geomatics, collectively. There are three forms of least squares adjustment: parametric, conditional, and combined: In parametric adjustment, one can find an observation equation h(X) = Y relating observations Y explicitly in terms of parameters X (leading to the A-model below).
Carl Friedrich GaussJohann Carl Friedrich Gauß ( ; traditionnellement transcrit Gauss en français ; Carolus Fridericus Gauss en latin), né le à Brunswick et mort le à Göttingen, est un mathématicien, astronome et physicien allemand. Il a apporté de très importantes contributions à ces trois domaines. Surnommé « le prince des mathématiciens », il est considéré comme l'un des plus grands mathématiciens de tous les temps. La qualité extraordinaire de ses travaux scientifiques était déjà reconnue par ses contemporains.
Prédiction par reconnaissance partielleLes algorithmes de prédiction par reconnaissance partielle (ou PPM pour Prediction by Partial Matching) constituent une famille d'algorithmes de compression de données sans perte, statistiques et adaptatifs inventée par John Cleary et Ian Witten en 1984. La prédiction par reconnaissance partielle se base sur une modélisation de contexte pour évaluer la probabilité d'apparition des différents symboles. Usuellement, le contexte est un ensemble de symboles déjà rencontrés dans la source de données (fichier, flux).