Mean percentage errorIn statistics, the mean percentage error (MPE) is the computed average of percentage errors by which forecasts of a model differ from actual values of the quantity being forecast. The formula for the mean percentage error is: where at is the actual value of the quantity being forecast, ft is the forecast, and n is the number of different times for which the variable is forecast. Because actual rather than absolute values of the forecast errors are used in the formula, positive and negative forecast errors can offset each other; as a result the formula can be used as a measure of the bias in the forecasts.
Robustesse (ingénierie)En ingénierie, la robustesse d'un système se définit comme la « stabilité de sa performance ». On distingue trois types de systèmes : les systèmes non-performants, qui ne remplissent pas les fonctionnalités attendues par l'utilisateur ; les systèmes performants fragiles, qui sont performants mais uniquement pour une plage réduite des paramètres internes ou externes ; les systèmes performants robustes, qui restent performants malgré des conditions externes présentant de larges variations d'amplitude (exemple : variation de température, d'adhérence au sol, de dispersion d'usinage.
Nonlinear filterIn signal processing, a nonlinear (or non-linear) filter is a filter whose output is not a linear function of its input. That is, if the filter outputs signals R and S for two input signals r and s separately, but does not always output αR + βS when the input is a linear combination αr + βs. Both continuous-domain and discrete-domain filters may be nonlinear. A simple example of the former would be an electrical device whose output voltage R(t) at any moment is the square of the input voltage r(t); or which is the input clipped to a fixed range [a,b], namely R(t) = max(a, min(b, r(t))).
Mean squared prediction errorIn statistics the mean squared prediction error (MSPE), also known as mean squared error of the predictions, of a smoothing, curve fitting, or regression procedure is the expected value of the squared prediction errors (PE), the square difference between the fitted values implied by the predictive function and the values of the (unobservable) true value g. It is an inverse measure of the explanatory power of and can be used in the process of cross-validation of an estimated model.
Filtre adaptatifUn filtre adaptatif est un système avec un filtre linéaire dont la fonction de transfert est contrôlée par des paramètres variables et un moyen d'ajuster ces paramètres selon un algorithme d'optimisation. En raison de la complexité des algorithmes d'optimisation, presque tous les filtres adaptatifs sont des filtres numériques. Les filtres adaptatifs sont nécessaires pour certaines applications parce que certains paramètres du traitement souhaité (par exemple, l'emplacement des surfaces réfléchissantes dans un espace réverbérant) ne sont pas connus à l'avance ou changent.
Algorithme de compression sans pertevignette|Comparaison de la compression d'image entre les formats JPG (à gauche) et PNG (à droite). PNG utilise une compression sans perte. On appelle algorithme de compression sans perte toute procédure de codage ayant pour objectif de représenter une certaine quantité d'information en utilisant ou en occupant un espace plus petit, permettant ainsi une reconstruction exacte des données d'origine. C'est-à-dire que la compression sans perte englobe les techniques permettant de générer un duplicata exact du flux de données d'entrée après un cycle de compression/expansion.
ParameterA parameter (), generally, is any characteristic that can help in defining or classifying a particular system (meaning an event, project, object, situation, etc.). That is, a parameter is an element of a system that is useful, or critical, when identifying the system, or when evaluating its performance, status, condition, etc. Parameter has more specific meanings within various disciplines, including mathematics, computer programming, engineering, statistics, logic, linguistics, and electronic musical composition.
Séquence binaire pseudo-aléatoireUne séquence binaire pseudo-aléatoire (SBPA, ou PRBS pour l'anglais pseudorandom binary sequence) est une suite de bits présentant un caractère pseudo-aléatoire : la valeur de chacun de ses éléments est indépendante des autres (« aléatoire »), mais il s'agit d'une suite périodique, ce qui la rend déterministe (« pseudo »). Un cas particulier de SBPA est la maximum length sequence (MLS). Une séquence binaire (BS, binary sequence) est une séquence de bits, i.e. pour . Une séquence binaire est composée de bits "1" et bits "0".
Lissage exponentielLe lissage exponentiel est une méthode empirique de lissage et de prévision de données chronologiques affectées d'aléas. Comme dans la méthode des moyennes mobiles, chaque donnée est lissée successivement en partant de la valeur initiale. Le lissage exponentiel donne aux observations passées un poids décroissant exponentiellement avec leur ancienneté. Le lissage exponentiel est une des méthodes de fenêtrage utilisées en traitement du signal. Elle agit comme un filtre passe-bas en supprimant les fréquences élevées du signal initial.
Théorie de la stabilitéEn mathématiques, la théorie de la stabilité traite la stabilité des solutions d'équations différentielles et des trajectoires des systèmes dynamiques sous des petites perturbations des conditions initiales. L'équation de la chaleur, par exemple, est une équation aux dérivées partielles stable parce que des petites perturbations des conditions initiales conduisent à des faibles variations de la température à un temps ultérieur en raison du principe du maximum.