ApprentissageL’apprentissage est un ensemble de mécanismes menant à l'acquisition de savoir-faire, de savoirs ou de connaissances. L'acteur de l'apprentissage est appelé apprenant. On peut opposer l'apprentissage à l'enseignement dont le but est de dispenser des connaissances et savoirs, l'acteur de l'enseignement étant l'enseignant.
Réseau de neurones artificielsUn réseau de neurones artificiels, ou réseau neuronal artificiel, est un système dont la conception est à l'origine schématiquement inspirée du fonctionnement des neurones biologiques, et qui par la suite s'est rapproché des méthodes statistiques. Les réseaux de neurones sont généralement optimisés par des méthodes d'apprentissage de type probabiliste, en particulier bayésien.
Agent intelligentEn intelligence artificielle, un agent intelligent (AI) est une entité autonome capable de percevoir son environnement grâce à des capteurs et aussi d'agir sur celui-ci via des effecteurs afin de réaliser des objectifs. Un agent intelligent peut également apprendre ou utiliser des connaissances pour pouvoir réaliser ses objectifs. Ils peuvent être simples ou complexes. Par exemple, un simple système réactif, comme le thermostat est considéré comme étant un agent intelligent.
Agent logicielEn informatique, un agent ou agent logiciel (du latin agere : agir) est un logiciel qui agit de façon autonome. C'est un programme qui accomplit des tâches à la manière d'un automate et en fonction de ce que lui a demandé son auteur. Dans le contexte d'Internet, les agents intelligents sont liés au Web sémantique, dans lequel ils sont utilisés pour faire à la place des humains les recherches et les corrélations entre les résultats de ces recherches. Ceci se fait en fonction de règles prédéfinies.
Théorie des réseauxvignette|Graphe partiel de l'internet, basé sur les données de opte.org du 15 janvier 2005 (voir description de l'image pour plus de détails) La théorie des réseaux est l'étude de graphes en tant que représentation d'une relation symétrique ou asymétrique entre des objets discrets. Elle s'inscrit dans la théorie des graphes : un réseau peut alors être défini comme étant un graphe où les nœuds (sommets) ou les arêtes (ou « arcs », lorsque le graphe est orienté) ont des attributs, comme une étiquette (tag).
Styles d'apprentissageLes styles d’apprentissage constituent une gamme de théories concurrentes et contestées qui, à partir d’un concept commun selon lequel les apprenants diffèreraient dans la façon d’acquérir leur connaissances, vise à tenir compte desdites différences d’acquisition supposées chez les apprenants. Bien que ces diverses théories divergent dans leurs vues sur la façon dont lesdits styles doivent être définis et classés, ces théories suggèrent que tous les apprenants pourraient être étiquetés en fonction d’un « style » d’apprentissage particulier comme « visuel », « auditif », « kinesthésique », « tactile », etc.
Experiential learningExperiential learning (ExL) is the process of learning through experience, and is more narrowly defined as "learning through reflection on doing". Hands-on learning can be a form of experiential learning, but does not necessarily involve students reflecting on their product. Experiential learning is distinct from rote or didactic learning, in which the learner plays a comparatively passive role. It is related to, but not synonymous with, other forms of active learning such as action learning, adventure learning, free-choice learning, cooperative learning, service-learning, and situated learning.
Gestion des donnéesLa gestion des données est une discipline de gestion qui tend à valoriser les données en tant que ressources numériques. La gestion des données permet d'envisager le développement d'architectures, de réglementations, de pratiques et de procédures qui gèrent correctement les besoins des organismes sur le plan de tout le cycle de vie des données. Les données sont, avec les traitements, l'un des deux aspects des systèmes d'information traditionnellement identifiés, et l'un ne peut aller sans l'autre pour un management du système d'information cohérent.
Réseau invariant d'échelleUn réseau invariant d'échelle (ou réseau sans échelle, ou encore scale-free network en anglais) est un réseau dont les degrés suivent une loi de puissance. Plus explicitement, dans un tel réseau, la proportion de nœuds de degré k est proportionnelle à pour grand, où est un paramètre (situé entre 2 et 3 pour la plupart des applications). Beaucoup de réseaux, comme le réseau du web, les réseaux sociaux et les réseaux biologiques semblent se comporter comme des réseaux invariants d'échelle, d'où l'importance de ce modèle.
Apprentissage automatiqueL'apprentissage automatique (en anglais : machine learning, « apprentissage machine »), apprentissage artificiel ou apprentissage statistique est un champ d'étude de l'intelligence artificielle qui se fonde sur des approches mathématiques et statistiques pour donner aux ordinateurs la capacité d'« apprendre » à partir de données, c'est-à-dire d'améliorer leurs performances à résoudre des tâches sans être explicitement programmés pour chacune. Plus largement, il concerne la conception, l'analyse, l'optimisation, le développement et l'implémentation de telles méthodes.