Sparse Distributed Learning Based on Diffusion Adaptation
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
We consider the problem of optimizing the parameters of a given denoising algorithm for restoration of a signal corrupted by white Gaussian noise. To achieve this, we propose to minimize Stein's unbiased risk estimate (SURE) which provides a means of asses ...
A sparse classifier is guaranteed to generalize better than a denser one, given they perform identical on the training set. However, methods like Support Vector Machine, even if they produce relatively sparse models, are known to scale linearly as the numb ...
Shannon's sampling theory and its variants provide effective solutions to the problem of reconstructing a signal from its samples in some “shift-invariant” space, which may or may not be bandlimited. In this paper, we present some further justification for ...
This paper studies the rate distortion behavior of sparse memoryless sources that serve as models of sparse signal representations. For the Hamming distortion criterion, R(D) is shown to be essentially linear. For the mean squared error measure, two mode ...