Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?
Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur Graph Search.
We develop a least mean-squares (LMS) diffusion strategy for sensor network applications where it is desired to estimate parameters of physical phenomena that vary over space. In particular, we consider a regression model with space-varying parameters that captures the system dynamics over time and space. We use a set of basis functions such as sinusoids or B-spline functions to replace the space-variant (local) parameters with space-invariant (global) parameters, and then apply diffusion adaptation to estimate the global representation. We illustrate the performance of the algorithm via simulations.
Mario Paolone, Vladimir Sovljanski
Michel Bierlaire, Timothy Michael Hillel, Janody Pougala