Concept

Régression (statistiques)

Résumé
En mathématiques, la régression recouvre plusieurs méthodes d’analyse statistique permettant d’approcher une variable à partir d’autres qui lui sont corrélées. Par extension, le terme est aussi utilisé pour certaines méthodes d’ajustement de courbe. En apprentissage automatique, on distingue les problèmes de régression des problèmes de classification. Ainsi, on considère que les problèmes de prédiction d'une variable quantitative sont des problèmes de régression tandis que les problèmes de prédiction d'une variable qualitative sont des problèmes de classification. Certaines méthodes, comme la régression logistique, sont à la fois des méthodes de régression au sens où il s'agit de prédire la probabilité d'appartenir à chacune des classes et des méthodes de classification. Le terme provient de la régression vers la moyenne observée par Francis Galton au : les enfants de personnes de grande taille avaient eux-mêmes une taille supérieure à celle de la population en moyenne, mais inférieure à celle de leurs parents (toujours en moyenne), sans que la dispersion de taille au sein de la population totale soit réduite pour autant. Les techniques développées pour quantifier ce phénomène ont engendré des outils de mesure précieux dans tous les champs d’application des statistiques. On considère une population d’individus (êtres humains, animaux, pays, biens de consommation...) qui peuvent être décrits selon plusieurs critères appelés variables. Il peut s’agir de variables quantitatives (grandeurs numériques telles que la taille, l’âge, le prix, un pourcentage...) ou qualitatives (sexe, catégorie socio-professionnelle, saison, type de produit...) Certaines variables peuvent être plus difficiles à mesurer que d’autres, pour des raisons techniques, des raisons d’accès (données publiques contre données privées), ou encore du fait d’un délai important entre la mise en place d’une expérience et son aboutissement. Il arrive donc que l’on souhaite estimer ces variables (dites expliquées) à partir des données plus faciles à obtenir (dites explicatives).
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.