Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?
Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur GraphSearch.
Cooperation among agents across the network leads to better estimation accuracy. However, in many network applications the agents infer and track different models of interest in an environment where agents do not know beforehand which models are being observed by their neighbors. In this work, we propose an adaptive and distributed clustering technique that allows agents to learn and form clusters from streaming data in a robust manner. Once clusters are formed, cooperation among agents with similar objectives then enhances the performance of the inference task. The performance of the proposed clustering algorithm is discussed by commenting on the behavior of probabilities of erroneous decision. We validate the performance of the algorithm by numerical simulations, that show how the clustering process enhances the mean-square-error performance of the agents across the net work.
Jean-Paul Richard Kneib, Benjamin Yvan Alexandre Clement, Benjamin Emmanuel Nicolas Beauchesne, Mathilde Jauzac, Johan Richard
, , ,