Le partitionnement en k-moyennes (ou k-means en anglais) est une méthode de partitionnement de données et un problème d'optimisation combinatoire. Étant donnés des points et un entier k, le problème est de diviser les points en k groupes, souvent appelés clusters, de façon à minimiser une certaine fonction. On considère la distance d'un point à la moyenne des points de son cluster ; la fonction à minimiser est la somme des carrés de ces distances. Il existe une heuristique classique pour ce problème, souvent appelée méthodes des k-moyennes, utilisée pour la plupart des applications. Le problème est aussi étudié comme un problème d'optimisation classique, avec par exemple des algorithmes d'approximation. Les k-moyennes sont notamment utilisées en apprentissage non supervisé où l'on divise des observations en k partitions. Les nuées dynamiques sont une généralisation de ce principe, pour laquelle chaque partition est représentée par un noyau pouvant être plus complexe qu'une moyenne. Un algorithme classique de k-means est le même que l'algorithme de quantification de Lloyd-Max. Étant donné un ensemble de points (x1, x2, ..., xn), on cherche à partitionner les n points en k ensembles S = {S1, S2, ..., Sk} (k ≤ n) en minimisant la distance entre les points à l'intérieur de chaque partition : où μi est le barycentre des points dans Si. Le terme « k-means » a été utilisé pour la première fois par James MacQueen en 1967, bien que l'idée originale ait été proposée par Hugo Steinhaus en 1957. L'algorithme classique a été proposé par Stuart Lloyd en 1957 à des fins de modulation par impulsions et codage, mais il n'a pas été publié en dehors des Laboratoires Bell avant 1982. En 1965, E. W. Forgy publia une méthode essentiellement similaire, raison pour laquelle elle est parfois appelée « méthode de Lloyd-Forgy ». Une version plus efficace, codée en Fortran, a été publiée par Hartigan et Wong en 1975/1979. Il existe un algorithme classique pour le problème, parfois appelé méthode des k-moyennes, très utilisé en pratique et considéré comme efficace bien que ne garantissant ni l'optimalité, ni un temps de calcul polynomial.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (32)
DH-406: Machine learning for DH
This course aims to introduce the basic principles of machine learning in the context of the digital humanities. We will cover both supervised and unsupervised learning techniques, and study and imple
CS-401: Applied data analysis
This course teaches the basic techniques, methodologies, and practical skills required to draw meaningful insights from a variety of data, with the help of the most acclaimed software tools in the dat
PHYS-512: Statistical physics of computation
The students understand tools from the statistical physics of disordered systems, and apply them to study computational and statistical problems in graph theory, discrete optimisation, inference and m
Afficher plus
Concepts associés (24)
DBSCAN
DBSCAN (density-based spatial clustering of applications with noise) est un algorithme de partitionnement de données proposé en 1996 par Martin Ester, Hans-Peter Kriegel, Jörg Sander et Xiaowei Xu. Il s'agit d'un algorithme fondé sur la densité dans la mesure qui s’appuie sur la densité estimée des clusters pour effectuer le partitionnement. thumb|400px|Les points A sont les points déjà dans le cluster. Les points B et C sont atteignables depuis A et appartiennent donc au même cluster.
Scikit-learn
Scikit-learn est une bibliothèque libre Python destinée à l'apprentissage automatique. Elle est développée par de nombreux contributeurs notamment dans le monde académique par des instituts français d'enseignement supérieur et de recherche comme Inria. Elle propose dans son framework de nombreuses bibliothèques d’algorithmes à implémenter, clé en main. Ces bibliothèques sont à disposition notamment des data scientists. Elle comprend notamment des fonctions pour estimer des forêts aléatoires, des régressions logistiques, des algorithmes de classification, et les machines à vecteurs de support.
Apprentissage de représentations
En apprentissage automatique, l'apprentissage des caractéristiques ou apprentissage des représentations est un ensemble de techniques qui permet à un système de découvrir automatiquement les représentations nécessaires à la détection ou à la classification des caractéristiques à partir de données brutes. Cela remplace l'ingénierie manuelle des fonctionnalités et permet à une machine d'apprendre les fonctionnalités et de les utiliser pour effectuer une tâche spécifique.
Afficher plus

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.