Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?
Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur GraphSearch.
Recent research works on distributed adaptive networks have inten- sively studied the case where the nodes estimate a common parame- ter vector collaboratively. However, there are many applications that are multitask-oriented in the sense that there are multiple parame- ter vectors that need to be inferred simultaneously. In this paper, we employ diffusion strategies to develop distributed algorithms that address clustered multitask problems by minimizing an appropriate mean-square error criterion with regularization. Some results on the mean-square stability and convergence of the algorithm are also provided. Simulations are conducted to illustrate the theoretical findings.
Michael Christoph Gastpar, Erixhen Sula
Jean-Philippe Thiran, Marco Pizzolato