**Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?**

Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur GraphSearch.

Publication# Quantum critical probing and simulation of colored quantum noise

Résumé

We propose a protocol to simulate the evolution of a non-Markovian open quantum system by considering a collisional process with a many-body system, which plays the role of an environment. As a result of our protocol, the environment spatial correlations are mapped into the time correlations of a noise that drives the dynamics of the open system. Considering the weak coupling limit, the open system can also be considered as a probe of the environment properties. In this regard, when preparing the environment in its ground state, a measurement of the dynamics of the open system allows to determine the length of the environment spatial correlations and therefore its critical properties. To illustrate our proposal we simulate the full system dynamics with matrix-product-states and compare this to the reduced dynamics obtained with an approximated variational master equation.

Official source

Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Concepts associés

Chargement

Publications associées

Chargement

Publications associées (3)

Chargement

Chargement

Chargement

Concepts associés (11)

État fondamental

L'état fondamental est, en physique, une notion polysémique renvoyant généralement à un état de plus basse énergie pour un électron, ou de plus grande neutralité électrique pour un atome.vignette|Dif

Open quantum system

In physics, an open quantum system is a quantum-mechanical system that interacts with an external quantum system, which is known as the environment or a bath. In general, these interactions significan

Quantum noise

Quantum noise is noise arising from the indeterminate state of matter in accordance with fundamental principles of quantum mechanics, specifically the uncertainty principle and via zero-point energy f

We consider the Langevin dynamics of a many-body system of interacting particles in d dimensions, in a very general setting suitable to model several out-of-equilibrium situations, such as liquid and glass rheology, active self-propelled particles, and glassy aging dynamics. The pair interaction potential is generic, and can be chosen to model colloids, atomic liquids, and granular materials. In the limit d -> infinity, we show that the dynamics can be exactly reduced to a single one-dimensional effective stochastic equation, with an effective thermal bath described by kernels that have to be determined self-consistently. We present two complementary derivations, via a dynamical cavity method and via a path-integral approach. From the effective stochastic equation, one can compute dynamical observables such as pressure, shear stress, particle mean-square displacement, and the associated response function. As an application of our results, we derive dynamically the 'state-following' equations that describe the response of a glass to quasistatic perturbations, thus bypassing the use of replicas. The article is written in a modular way, that allows the reader to skip the details of the derivations and focus on the physical setting and the main results.

2019As an extension of the isotropic setting presented in the companion paper Agoritsas et al (2019 J. Phys. A: Math. Theor. 52 144002), we consider the Langevin dynamics of a many-body system of pairwise interacting particles in d dimensions, submitted to an external shear strain. We show that the anisotropy introduced by the shear strain can be simply addressed by moving into the co-shearing frame, leading to simple dynamical mean field equations in the limit d -> infinity. The dynamics is then controlled by a single one-dimensional effective stochastic process which depends on three distinct strain-dependent kernels-self-consistently determined by the process itself-encoding the effective restoring force, friction and noise terms due to the particle interactions. From there one can compute dynamical observables such as particle mean-square displacements and shear stress fluctuations, and eventually aim at providing an exact d -> infinity benchmark for liquid and glass rheology. As an application of our results, we derive dynamically the 'statefollowing' equations that describe the static response of a glass to a finite shear strain until it yields.

2019Nathan Ramusat, Vincenzo Savona

Simulating the dynamics and the non-equilibrium steady state of an open quantum system are hard computational tasks on conventional computers. For the simulation of the time evolution, several efficient quantum algorithms have recently been developed. However, computing the non-equilibrium steady state as the long-time limit of the system dynamics is often not a viable solution, because of exceedingly long transient features or strong quantum correlations in the dynamics. Here, we develop an efficient quantum algorithm for the direct estimation of averaged expectation values of observables on the non-equilibrium steady state, thus bypassing the time integration of the master equation. The algorithm encodes the vectorized representation of the density matrix on a quantum register, and makes use of quantum phase estimation to approximate the eigenvector associated to the zero eigenvalue of the generator of the system dynamics. We show that the output state of the algorithm allows to estimate expectation values of observables on the steady state. Away from critical points, where the Liouvillian gap scales as a power law of the system size, the quantum algorithm performs with exponential advantage compared to exact diagonalization.