Robust Tightly Coupled GNSS/INS Estimation for Navigation in Challenging Scenarios
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
The capability of a previously proposed VDM (vehicle dynamic model) based navigation method for UAVs is assessed in attitude determination without IMU data. This method utilizes the VDM as main process model within the navigation filter and treats data fro ...
Following the cultural revolution of the late 1960s, the number of elite and recreational runners rose consistently, reaching approximately 7.9 million road races participants in 2018. Today, running is everywhere. City parks, forests, mountain trails, and ...
Proper modeling of stochastic errors in inertial sensors plays a crucial role in the achievable quality of GNSS-INS integration especially with low-cost inertial sensors. Generalized Method of Wavelet Moments (GMWM) can model the underlying process for suc ...
The use of a Bayesian filter (e.g., Kalman filter) for the fusion of information from satellite positioning and inertial navigation is a common approach in many applications, where the knowledge of position, velocity, and attitude in space are of great int ...
A recently proposed navigation methodology for aerial platforms based on the vehicle dynamic model (VDM) has shown promising results in terms of navigation autonomy. Its practical realization requires that control inputs are related to the same absolute ti ...
The combination of Global Navigation Satellite Systems (GNSS) and Inertial Navigation System (INS) has become the baseline of many vehicular applications. However, in challenging GNSS scenarios, classical GNSS/INS integration estimators are very sensitive ...
This paper presents extensions and practical realization of a previously proposed novel approach to navigation and sensor integration for small unmanned aerial vehicles (UAV). The proposed approach employs vehicle dynamic model (VDM) as process model withi ...
The dominant navigation system for small civilian UAVs today is based on integration of inertial navigation system (INS) and global navigation satellite system (GNSS). This strategy works well to navigate the UAV, as long as proper reception of GNSS signal ...
A realistic rendezvous and docking navigation solution applicable to CubeSats is investigated. The scalability analysis of the ESA Autonomous Transfer Vehicle Guidance, Navigation & Control (GNC) performances and the Russian docking system, shows that the ...
We designed a tightly-coupled integration between GNSS and inertial navigation systems (INS) where we modify the update step of a classical Extended Kalman Filter (EKF) to consider different robust estimators (such as M-estimators). We consider different f ...