Silicon photonicsSilicon photonics is the study and application of photonic systems which use silicon as an optical medium. The silicon is usually patterned with sub-micrometre precision, into microphotonic components. These operate in the infrared, most commonly at the 1.55 micrometre wavelength used by most fiber optic telecommunication systems. The silicon typically lies on top of a layer of silica in what (by analogy with a similar construction in microelectronics) is known as silicon on insulator (SOI).
Biologie quantiqueLa biologie quantique est l'étude des applications de la mécanique quantique et de la chimie théorique aux objets et problèmes biologiques. De nombreux processus biologiques impliquent la conversion de l'énergie en des formes utilisables pour des transformations chimiques et sont de nature quantique. Ces processus impliquent des réactions chimiques, l'absorption de la lumière, la formation d'états électroniques excités, le transfert d'énergie d'excitation et le transfert d'électrons et de protons (ions hydrogène) dans des processus chimiques tels que la photosynthèse, l'olfaction et la respiration cellulaire.
PhotonLe photon est le quantum d'énergie associé aux ondes électromagnétiques (allant des ondes radio aux rayons gamma en passant par la lumière visible), qui présente certaines caractéristiques de particule élémentaire. En théorie quantique des champs, le photon est la particule médiatrice de l’interaction électromagnétique. Autrement dit, lorsque deux particules chargées électriquement interagissent, cette interaction se traduit d’un point de vue quantique comme un échange de photons.
Distribution quantique de cléL'échange quantique de clé (ou distribution quantique de clé, ou négociation quantique de clé), souvent abrégé QKD (pour l'anglais : quantum key distribution) est un échange de clé, c'est-à-dire un protocole cryptographique visant à établir un secret partagé entre deux participants qui communiquent sur un canal non sécurisé. Ce secret sert généralement à générer une clé cryptographique commune (c'est pourquoi il s'agit d'échange de clé, au singulier), permettant ensuite aux participants de chiffrer leurs communications au moyen d'un algorithme de chiffrement symétrique.
Interprétation de la mécanique quantiqueUne interprétation de la mécanique quantique est une tentative d'explication de la façon dont la théorie mathématique de la mécanique quantique « correspond » à la réalité. Bien que la mécanique quantique ait fait l'objet de démonstrations rigoureuses dans une gamme extraordinairement large d'expériences (aucune prédiction de la mécanique quantique n'a été contredite par l'expérience), il existe un certain nombre d'écoles de pensée concurrentes sur son interprétation.
État quantiqueL'état d'un système physique décrit tous les aspects de ce système, dans le but de prévoir les résultats des expériences que l'on peut réaliser. Le fait que la mécanique quantique soit non déterministe entraîne une différence fondamentale par rapport à la description faite en mécanique classique : alors qu'en physique classique, l'état du système détermine de manière absolue les résultats de mesure des grandeurs physiques, une telle chose est impossible en physique quantique et la connaissance de l'état permet seulement de prévoir, de façon toutefois parfaitement reproductible, les probabilités respectives des différents résultats qui peuvent être obtenus à la suite de la réduction du paquet d'onde lors de la mesure d'un système quantique.
Introduction à la mécanique quantiqueLe but de cet article est de présenter une introduction accessible, non technique, au sujet. Pour l'article encyclopédique consulter Mécanique quantique. La mécanique quantique est la science de l'infiniment petit : elle regroupe l'ensemble des travaux scientifiques qui interprètent le comportement des constituants de la matière, et ses interactions avec l'énergie, à l'échelle des atomes et des particules subatomiques. La physique classique décrit la matière et l'énergie à l'échelle humaine, dans leur observation de tous les jours, y compris les corps célestes.
Optique quantiqueL’optique quantique désigne l'ensemble des expériences dans lesquelles la lumière ou bien l'interaction entre lumière et matière doivent être quantifiées. C'est un domaine de recherche en plein essor, à la frontière entre la mécanique quantique et l'optique. Dans le cadre de l’optique quantique, la lumière est considérée comme constituée de photons, objets quantiques qui se comportent : comme des corpuscules dans leurs interactions avec la matière, et comme des ondes pour leur propagation.
Superconducting quantum computingSuperconducting quantum computing is a branch of solid state quantum computing that implements superconducting electronic circuits using superconducting qubits as artificial atoms, or quantum dots. For superconducting qubits, the two logic states are the ground state and the excited state, denoted respectively. Research in superconducting quantum computing is conducted by companies such as Google, IBM, IMEC, BBN Technologies, Rigetti, and Intel. Many recently developed QPUs (quantum processing units, or quantum chips) utilize superconducting architecture.
Photoniquevignette|Image de la lumière d'un laser ultra large-bande émergeant d'une fibre monomode de cristal photonique dont on voit la sortie à droite (point blanc).|alt=Sur fond noir une grande tache en forme d'étoile irisée à gauche et un petit point blanc à droite. La photonique est la branche de la physique concernant l'étude et la fabrication de composants permettant la génération, la transmission, le traitement (modulation, amplification) ou la conversion de signaux optiques.