Empirical study of the topology and geometry of deep networks
Publications associées (36)
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Thanks to recent advancements in image processing and deep learning techniques, visual surface inspection in production lines has become an automated process as long as all the defects are visible in a single or a few images. However, it is often necessary ...
The way our brain learns to disentangle complex signals into unambiguous concepts is fascinating but remains largely unknown. There is evidence, however, that hierarchical neural representations play a key role in the cortex. This thesis investigates biolo ...
Two distinct limits for deep learning have been derived as the network width h -> infinity, depending on how the weights of the last layer scale with h. In the neural tangent Kernel (NTK) limit, the dynamics becomes linear in the weights and is described b ...
Human detection and pose estimation are essential components for any artificial system responsive to the presence of humans and that react according to human-centered tasks. Robotic systems are typical examples, for which the body pose represents fine grai ...
Visual Focus of Attention (VFOA) estimation in conversation is challenging as it relies on difficult to estimate information (gaze) combined with scene features like target positions and other contextual information (speaking status) allowing to disambigua ...
While several research studies have focused on analyzing human behavior and, in particular, emotional signals from visual data, the problem of synthesizing face video sequences with specific attributes (e.g. age, facial expressions) received much less atte ...
Although recent works have brought some insights into the performance improvement of techniques used in state-of-the-art deep-learning models, more work is needed to understand their generalization properties. We shed light on this matter by linking the lo ...
Over the past few years, there have been fundamental breakthroughs in core problems in machine learning, largely driven by advances in deep neural networks. The amount of annotated data drastically increased and supervised deep discriminative models exceed ...
In the recent years, Deep Neural Networks (DNNs) have managed to succeed at tasks that previously appeared impossible, such as human-level object recognition, text synthesis, translation, playing games and many more. In spite of these major achievements, o ...
Artificial intelligence has been an ultimate design goal since the inception of computers decades ago. Among the many attempts towards general artificial intelligence, modern machine learning successfully tackles many complex problems thanks to the progres ...