Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?
Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur Graph Search.
When waves impinge on a disordered material they are back-scattered and form a highly complex interference pattern. Suppressing any such distortions of a wave’s free propagation is a challenging task with many applications in a number of different disciplines. In a recent theoretical proposal, it was pointed out that both perfect transmission through disorder as well as a complete suppression of any variation in a wave’s intensity can be achieved by adding a continuous gain–loss distribution to the disorder. Here we propose a practical discretized version of this abstract concept and implement it in a realistic acoustic system. Our prototype consists of an acoustic waveguide containing several inclusions that scatter the incoming wave in a passive configuration and provide the gain or loss when being actively controlled. Our measurements on this non-Hermitian acoustic metamaterial demonstrate the creation of a reflectionless scattering wave state that features a unique form of discrete constant-amplitude pressure waves. In addition to demonstrating that gain–loss additions can turn localized systems into transparent ones, we expect our proof-of-principle demonstration to trigger interesting new developments, not only in sound engineering, but also in other related fields such as in non-Hermitian photonics.
Jean-François Molinari, Antonio Joaquin Garcia Suarez, Ghatu Subhash
Anja Skrivervik, Denys Nikolayev