Blocage de modeLe blocage de mode ou verrouillage de mode désigne une technique de synchronisation de la phase des modes laser destinée à produire de courtes et intenses impulsions lumineuses. Le blocage de mode est réalisé à l'aide de différents éléments optiques : colorant à absorbant saturable, modulateur acousto-optique, cellule de Pockels... La principale application du blocage de mode est la réalisation de laser femtoseconde. Les premiers lasers à colorant délivrant de courtes impulsions sont apparus dans les années 1970, mais les impulsions qu'ils délivrent ne sont pas suffisamment stables .
Tube électroniquevignette|upright=0.7|Lampe double-triode de fabrication russe. Un tube électronique (thermionic valve en anglais ou vacuum tube aux États-Unis), également appelé tube à vide ou même lampe, est un composant électronique actif, généralement utilisé comme amplificateur de signal. Le tube à vide redresseur ou amplificateur a été remplacé dans beaucoup d'applications par différents semi-conducteurs, mais n'a pas été remplacé dans certains domaines comme l'amplification de forte puissance ou des hyperfréquences.
PhononEn physique, un phonon correspond à une excitation collective dans un arrangement périodique d'atomes constituant une structure cristalline ou amorphe. La déformation est élastique. L'onde qui se propage peut être assimilée à une quasi-particule. Ils permettent d'expliquer les propriétés physiques des solides : la capacité thermique ; la conductivité thermique ; la capacité à propager le son ; la dilatation thermique. Le concept de phonon a été créé par Igor Tamm en et le mot « phonon » (du grec ancien / phonê, la voix) a été inventé par Yakov Frenkel en .
NanofilUn nanofil est une nanostructure, dont le diamètre est exprimé en nanomètre, donc en principe de 1 à 999 nanomètres. Pour plus de simplicité, on tolère un certain débordement dans ces dimensions. Alternativement, les nanofils peuvent être définis comme des structures qui ont une épaisseur ou un diamètre définis, mais d'une longueur quelconque. À ces échelles les effets quantiques sont importants - d'où l'utilisation du terme de « fils quantiques ».
Spectroscopie de perte d'énergie des électronsLa spectroscopie de perte d’énergie des électrons (electron energy loss spectroscopy, EELS) est une technique d'analyse dans laquelle le matériau à analyser est exposé à un faisceau d'électrons dont l'énergie cinétique est située dans une plage relativement étroite. Certains de ces électrons seront soumis à des interactions inélastiques avec l'échantillon, ce qui signifie qu'ils perdront de l'énergie et que leurs trajectoires subiront une déflexion faible et aléatoire.
Microscopie à super-résolutionLa microscopie à super-résolution est un ensemble de techniques permettant d'imager en microscopie optique des objets à une résolution à l’échelle nanométrique. Elle se démarque par le fait que la résolution obtenue n'est plus limitée par le phénomène de diffraction. Du fait de la diffraction de la lumière, la résolution d’un microscope optique conventionnel est en principe limitée, indépendamment du capteur utilisé et des aberrations ou imperfections des lentilles.
Spectroscopie térahertz dans le domaine temporelvignette| Impulsion typique mesurée par THz-TDS. En physique, la spectroscopie TéraHertz dans le domaine temporel ( THz-TDS ) est une technique spectroscopique dans laquelle les propriétés de la matière sont sondées avec de courtes impulsions de rayonnement térahertz. Le schéma de génération et de détection est sensible à l'effet de l'échantillon sur l'amplitude et la phase du rayonnement térahertz. En mesurant dans le domaine temporel, la technique peut fournir plus d'informations que la spectroscopie à transformée de Fourier conventionnelle, qui n'est sensible qu'à l'amplitude.
Maison à basse consommation d'énergiethumb|Thermographie d'une maison à basse consommation d'énergie, montrant les pertes de chaleur (comparées à celles d'un bâtiment traditionnel à l'arrière-plan). Une maison à basse consommation d'énergie est une maison dont les choix de construction (orientation du bâtiment, matériaux et types d'énergies utilisés) permettent de limiter la consommation énergétique. Ce type de maison est devenu la norme en France pour toutes les constructions neuves, depuis le Grenelle de l'environnement et la réglementation thermique qui en a découlé (actuellement RT 2012).
Cohérence (physique)La cohérence en physique est l'ensemble des propriétés de corrélation d'un système ondulatoire. Son sens initial était la mesure de la capacité d'onde(s) à donner naissances à des interférences — du fait de l'existence d'une relation de phase définie — mais il s'est élargi. On peut parler de cohérence entre 2 ondes, entre les valeurs d'une même onde à deux instants différents (cohérence temporelle) ou entre les valeurs d'une même onde à deux endroits différents (cohérence spatiale).
Rayonnement du corps noirvignette|303px|Au fur et à mesure que la température diminue, le sommet de la courbe de rayonnement du corps noir se déplace à des intensités plus faibles et des longueurs d'onde plus grandes. Le diagramme de rayonnement du corps noir est comparé avec le modèle classique de Rayleigh et Jeans. vignette|303px|La couleur (chromaticité) du rayonnement du corps noir dépend de la température du corps noir. Le lieu géométrique de telles couleurs, représenté ici en espace x,y CIE XYZ, est connu sous le nom de lieu géométrique de Planck.