En physique, un phonon correspond à une excitation collective dans un arrangement périodique d'atomes constituant une structure cristalline ou amorphe. La déformation est élastique. L'onde qui se propage peut être assimilée à une quasi-particule.
Ils permettent d'expliquer les propriétés physiques des solides :
la capacité thermique ;
la conductivité thermique ;
la capacité à propager le son ;
la dilatation thermique.
Le concept de phonon a été créé par Igor Tamm en et le mot « phonon » (du grec ancien / phonê, la voix) a été inventé par Yakov Frenkel en . Le suffixe « -on », qui apparaît dans le nom de nombreuses entités de la physique de la matière condensée (excitons, magnons, etc.) a été calqué sur la fin du mot « électron » (mot inventé par George Stoney en 1891).
Un phonon est la description quantique du mouvement vibratoire élémentaire dans lequel un réseau d'atomes ou d'ions oscille uniformément à une fréquence donnée. En mécanique classique cela correspond à un mode normal de vibration. L'analyse de Fourier permet de décomposer toute vibration du réseau comme une superposition de ces modes de vibration élémentaires. Alors que les modes normaux de la mécanique classique sont traités comme des phénomènes ondulatoires, les phonons peuvent être assimilés à une particule de la mécanique quantique.
Dans un solide, il existe des forces d'interaction (essentiellement les forces covalentes ou ioniques dans notre cas) qui maintiennent chaque atome près d'une position d'équilibre. L'interaction entre chaque paire d'atomes peut être caractérisée par une fonction d'énergie potentielle qui ne dépend que de la distance entre chacun des couples de ces atomes et de leur nature. L'énergie potentielle du réseau dans son ensemble est la somme des énergies potentielles d'interaction de chaque paire :
Cette expression, caractéristique d'un problème à N corps, ne se prête pas à une résolution que ce soit en mécanique classique ou en mécanique quantique. Il est donc nécessaire de procéder à des approximations pour poursuivre l'analyse.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Theory and application of quantum simulations to model, understand, and predict the properties of real materials.
Introduction à la théorie des transitions de phase
In this course we study heat transfer (and energy conversion) from a microscopic perspective. First we focus on understanding why classical laws (i.e. Fourier Law) are what they are and what are their
vignette|Solide en laiton conçu par Piet Hein prenant la forme d'un superœuf.|alt=Superœuf solide de couleur dorée posé sur une surface indéfinissable. L’état solide est un état de la matière caractérisé par l'absence de liberté entre les molécules ou les ions (métaux par exemple). Les critères macroscopiques de la matière à l'état solide sont : le solide a une forme propre ; le solide a un volume propre. Si un objet solide est ferme, c'est grâce aux liaisons entre les atomes, ions ou molécules composants du solide.
Matter waves are a central part of the theory of quantum mechanics, being half of wave–particle duality. All matter exhibits wave-like behavior. For example, a beam of electrons can be diffracted just like a beam of light or a water wave. The concept that matter behaves like a wave was proposed by French physicist Louis de Broglie (dəˈbrɔɪ) in 1924, and so matter waves are also known as de Broglie waves.
L'énergie du point zéro est la plus faible énergie possible qu'un système physique quantique puisse avoir ; cela correspond à son énergie quand il est dans son état fondamental, c'est-à-dire lorsque toute autre forme d'énergie a été retirée. Tous les systèmes mécaniques quantiques subissent des fluctuations même quand ils sont à leur état fondamental (auquel est associée une énergie du point zéro), une conséquence de leur nature ondulatoire.
Couvre la chaîne harmonique 1D comme un modèle de vibrations de treillis dans les solides.
Explore les vibrations dans les solides, y compris les oscillateurs harmoniques, les phonons et le modèle Einstein de la capacité thermique.
Explore les fréquences des phonons, la capacité thermique, les propriétés thermiques, les vibrations dans les solides, le gaz d'électrons libres, la fonction Fermi et la théorie fonctionnelle de la densité.
We demonstrate that a spin current flowing through a nanocontact into a uniaxial antiferromagnet with first- and second-order anisotropy can excite a self-localized dynamic magnetic soliton, known as a spin-wave droplet in ferromagnets. The droplet nucleat ...
Over the past few decades, nanostructures have garnered significant attention due to their potential for embodying new physical paradigms and delivering cutting-edge technological applications. Dimensionality strongly affects the vibrational, electron-phon ...
EPFL2023
Phonon anharmonicity plays a crucial role in determining the stability and vibrational properties of high-pressure hydrides. Furthermore, strong anharmonicity can render phonon quasiparticle picture obsolete questioning standard approaches for modeling sup ...