Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?
Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur Graph Search.
At off-design operating points, Francis turbines develop cavitation vortex rope in the draft tube which may interact with the hydraulic system. Risk resonance assessment by means of eigenmodes computation of the system is usually performed. However, the system response to the excitation source induced by the cavitation vortex rope is not predicted in terms of amplitudes and phase. Only eigenmodes shapes with related frequencies and dampings can be predicted. Besides this modal analysis, the risk resonance assessment can be completed by a forced response analysis. This method allows identifying the contribution of each eigenmode into the system response which depends on the system boundary conditions and the excitation source location. In this paper, a forced response analysis of a Francis turbine hydroelectric power plant including hydraulic system, rotating train, electrical system and control devices is performed. First, the general methodology of the forced response analysis is presented and validated with time domain simulations. Then, analysis of electrical, hydraulic and hydroelectric systems are performed and compared to analyse the influence of control structures on pressure fluctuations induced by cavitation vortex rope.
Mario Paolone, Elena Vagnoni, Aldo Leonardo Alerci
, , , , ,
German Augusto Ramirez Arroyave