Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?
Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur Graph Search.
In this work, we propose a data-driven approach for real-time self-collision avoidance in multi-arm systems. The approach consists of modeling the regions in joint-space that lead to collisions via a Self-Collision Avoidance (SCA) boundary and use it as a constraint for a centralized Inverse Kinematics (IK) solver. This problem is particularly challenging as the dimensionality of the joint-configurations is in the order of millions (for a dual-arm system), while the IK solver must run within a control loop of 2ms. Hence, an extremely sparse solution is needed for this big data problem. The SCA region is modeled through a sparse non-linear kernel classification method that yields a runtime of less than 2ms (on a single thread CPU process) and has a False Positive Rate (FPR)=1.5%. Code for generating multi-arm datasets and learning the sparse SCA boundary are available at: https://github.com/nbfigueroa/SCA-Boundary-Learning
David Atienza Alonso, Miguel Peon Quiros, Benoît Walter Denkinger