Estimation of groundwater storage from seismic data using deep learning
Publications associées (49)
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Deep neural networks have become ubiquitous in today's technological landscape, finding their way in a vast array of applications. Deep supervised learning, which relies on large labeled datasets, has been particularly successful in areas such as image cla ...
End-to-end learning methods like deep neural networks have been the driving force in the remarkable progress of machine learning in recent years. However, despite their success, the deployment process of such networks in safety-critical use cases, such as ...
Deep neural networks have completely revolutionized the field of machinelearning by achieving state-of-the-art results on various tasks ranging fromcomputer vision to protein folding. However, their application is hindered bytheir large computational and m ...
Artificial intelligence, particularly the subfield of machine learning, has seen a paradigm shift towards data-driven models that learn from and adapt to data. This has resulted in unprecedented advancements in various domains such as natural language proc ...
Touchscreens are nowadays the preferred choice for user interfaces in consumer electronics. Significant technological advances have been made in terms of touch sensing and visual quality. However, the haptic feedback offered by commercial products is still ...
In digital imaging, especially in the process of data acquisition and transmission, images are often affected by impulsive noise. Therefore, it is essential to remove impulsive noise from images before any further processing. Due to the remarkable performa ...
According to the proposed Artificial Intelligence Act by the European Comission (expected to pass at the end of 2023), the class of High-Risk AI Systems (Title III) comprises several important applications of Deep Learning like autonomous driving vehicles ...
In this paper we explore deep learning models to monitor longitudinal liveability changes in Dutch cities at the neighbourhood level. Our liveability reference data is defined by a country-wise yearly survey based on a set of indicators combined into a liv ...
In communication systems, there are many tasks, like modulation classification, for which Deep Neural Networks (DNNs) have obtained promising performance. However, these models have been shown to be susceptible to adversarial perturbations, namely impercep ...
Lensless imaging can provide visual privacy due to the highly multiplexed characteristic of its measurements. However, this alone is a weak form of security, as various adversarial attacks can be designed to invert the one-to-many scene mapping of such cam ...