Learning embeddings: efficient algorithms and applications
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Thanks to Deep Learning Text-To-Speech (TTS) has achieved high audio quality with large databases. But at the same time the complex models lost any ability to control or interpret the generation process. For the big challenge of affective TTS it is infeasi ...
Polynomial neural networks (PNNs) have been recently shown to be particularly effective at image generation and face recognition, where high-frequency information is critical. Previous studies have revealed that neural networks demonstrate a spectral bias ...
Demand forecasting is becoming increasingly important as firms launch new products with short life cycles more frequently. This paper provides a framework based on state-of-the-art techniques that enables firms to use quantitative methods to forecast sales ...
This thesis consists of three applications of machine learning techniques to empirical asset pricing.In the first part, which is co-authored work with Oksana Bashchenko, we develop a new method that detects jumps nonparametrically in financial time series ...
To predict the response of masonry buildings to various types of loads, engineers use finite element models, specifically solid-element and macro-element models. For predicting masonry responses to seismic events in particular, equivalent frame models-a su ...
Machine learning has become the state of the art for the solution of the diverse inverse problems arising from computer vision and medical imaging, e.g. denoising, super-resolution, de-blurring, reconstruction from scanner data, quantitative magnetic reson ...
The success of deep learning may be attributed in large part to remarkable growth in the size and complexity of deep neural networks. However, present learning systems raise significant efficiency concerns and privacy: (1) currently, training systems are l ...
This thesis consists of three applications of machine learning techniques to risk management. The first chapter proposes a deep learning approach to estimate physical forward default intensities of companies. Default probabilities are computed using artifi ...
This paper investigates the theory of robustness against adversarial attacks. We focus on randomized classifiers (i.e. classifiers that output random variables) and provide a thorough analysis of their behavior through the lens of statistical learning theo ...
Deep neural networks have achieved impressive results in many image classification tasks. However, since their performance is usually measured in controlled settings, it is important to ensure that their decisions remain correct when deployed in noisy envi ...