Fast hierarchical solvers for symmetric eigenvalue problems
Publications associées (206)
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
We consider the problem of efficiently solving Sylvester and Lyapunov equations of medium and large scale, in case of rank-structured data, i.e., when the coefficient matrices and the right-hand side have low-rank off- diagonal blocks. This comprises probl ...
The computation of the matrix exponential is a ubiquitous operation in numerical mathematics, and for a general, unstructured n×n matrix it can be computed in O(n3) operations. An interesting problem arises if the input matrix is a Toeplitz matrix, for exa ...
PurposeMagnetic resonance imaging (MRI) artifacts are originated from various sources including instability of an magnetic resonance (MR) system, patient motion, inhomogeneities of gradient fields, and so on. Such MRI artifacts are usually considered as ir ...
We consider the approximate computation of spectral projectors for symmetric banded matrices. While this problem has received considerable attention, especially in the context of linear scaling electronic structure methods, the presence of small relative s ...
Multivariate curve resolution via alternating least squares (ALS) is used to resolve the concentration profiles C and the pure component spectra E of S species from the multivariate absorbance data A, assuming the bilinear model ...
Sparse matrices are favorable objects in machine learning and optimization. When such matrices are used, in place of dense ones, the overall complexity requirements in optimization can be significantly reduced in practice, both in terms of space and run-ti ...
This paper develops a suite of algorithms for constructing low-rank approximations of an input matrix from a random linear image of the matrix, called a sketch. These methods can preserve structural properties of the input matrix, such as positive-semideni ...
We derive an algorithm of optimal complexity which determines whether a given matrix is a Cauchy matrix, and which exactly recovers the Cauchy points defining a Cauchy matrix from the matrix entries. Moreover, we study how to approximate a given matrix by ...
The focus of this thesis is on developing efficient algorithms for two important problems arising in model reduction, estimation of the smallest eigenvalue for a parameter-dependent Hermitian matrix and solving large-scale linear matrix equations, by extra ...
Polarimetric incoherent target decomposition aims at accessing physical parameters of illuminated scatters through the analysis of the target coherence or covariance matrix. In this framework, independent component analysis (ICA) was recently proposed as a ...
Institute of Electrical and Electronics Engineers2016