Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?
Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur Graph Search.
Effective passivation and stabilization of both the inside and interface of a perovskite layer are crucial for perovskite solar cells (PSCs), in terms of efficiency, reproducibility, and stability. Here, the first formamidinium lead iodide (δ-FAPbI3) polymorph passivated and stabilized MAPbI3 PSCs are reported. This novel MAPbI3/δ-FAPbI3 structure is realized via treating a mixed organic cation MA x FA1- x PbI3 perovskite film with methylamine (MA) gas. In addition to the morphology healing, MA gas can also induce the formation of δ-FAPbI3 phase within the perovskite film. The in situ formed 1D δ-FAPbI3 polymorph behaves like an organic scaffold that can passivate the trap state, tunnel contact, and restrict organic-cation diffusion. As a result, the device efficiency is easily boosted to 21%. Furthermore, the stability of the MAPbI3/δ-FAPbI3 film is also obviously improved. This δ-FAPbI3 phase passivation strategy opens up a new direction of perovskite structure modification for further improving stability without sacrificing efficiency.
Shaik Mohammed Zakeeruddin, Zhongjin Shen, Yelin Hu, Hongwei Zhu, Yinghui Wu, Jialin Wang, Miao Chen
Mohammad Khaja Nazeeruddin, Jianxing Xia, Ruiyuan Hu
Mohammad Khaja Nazeeruddin, Hiroyuki Kanda, Pavel Culik