Early Stages of Precipitation In Aluminum Alloys by First-Principles and Machine-Learning Atomistic Simulations
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Recent surging interest in strengthening of High Entropy Alloys (HEAs) with possible chemical ordering motivates the development of new theory. Here, an existing theory for random alloys that accounts for solute-dislocation and solute–solute interactions i ...
Cu-Be alloys provide excellent electrical and mechanical properties, but present serious health hazards during manufacturing. Among alternative alloys, the Cu-Ti system has the highest yield strength; however, Ti cannot be easily solutionized at concentrat ...
Tuning the mechanical properties of metals, including strength, through adjusting the type and/or concentration of added solute elements, has been recognized as an effective way to design and produce materials with desired or optimized mechanical propertie ...
Most metallurgical properties, e.g., dislocation propagation, precipitate formation, can only be fully understood atomistically but most phenomena and quantities of interest cannot be measured experimentally. Accurate simulation methods are essential but f ...
High-strength metal alloys achieve their performance via careful control of precipitates and solutes.The nucleation, growth, and kinetics of precipitation, and the resulting mechanical properties, are inherently atomic scale phenomena, particularly during ...
Metal additive manufacturing (AM) offers the possibility to rapidly produce complex geometries that are not achievable with conventional manufacturing methods. The two most common technologies, Laser Powder Bed Fusion (LPBF) and Direct Metal Deposition (DM ...
Body-centered-cubic (BCC) high entropy alloys (HEAs) can show exceptionally high strength up to high temperatures. Mechanistic theories are needed to guide alloy discovery within the immense multicomponent HEA compositional space. Here, two new theories fo ...
Many metal alloys are strengthened by controlling precipitation to achieve an optimal peak-aged condi-tion where the strength-limiting processes of precipitate shearing and Orowan looping are thought to be comparable. Qualitative models have long captured ...
Additive manufacturing offers the opportunity to produce complex geometries from novel alloys with improved properties. Adapting conventional alloys to the process-specific properties can facilitate rapid implementation of these materials in industrial pra ...
The influence of post-heat treatment on the microstructure and properties of 4D printed Fe-17Mn-5Si-10Cr-4Ni (wt. %) shape memory alloy (SMA) produced via a laser powder bed fusion process is investigated in this study. It is shown that heat-treatment temp ...