Technologie portablethumb|Montres connectées Une technologie portable ou technologie mettable (de l'anglais wearable technology, appelée également habitronique) est un vêtement ou un accessoire comportant des éléments informatiques et électroniques avancés. Les technologies portables incluent notamment des textiles (chandails, gants, Hexoskin, maillots de bain connectés, pansements connectés), des lunettes (Google Glass), des montres connectées (Pebble Watch, Apple Watch) et des bijoux.
Apprentissage ensemblisteIn statistics and machine learning, ensemble methods use multiple learning algorithms to obtain better predictive performance than could be obtained from any of the constituent learning algorithms alone. Unlike a statistical ensemble in statistical mechanics, which is usually infinite, a machine learning ensemble consists of only a concrete finite set of alternative models, but typically allows for much more flexible structure to exist among those alternatives.
Moniteur d'activité physiquethumb|Des bracelets connectés Samsung Galaxy Fit. Un moniteur d'activité physique, aussi appelé bracelet connecté ou traqueur d'activité (en anglais, activity tracker) est un appareil électronique ou une application qui permet de mesurer l'intensité et la quantité d'activité physique effectuée par un individu tels que la distance marchée ou courue, la consommation et la dépense de calories, et dans certains cas le rythme cardiaque et la qualité du sommeil.
Forêt d'arbres décisionnelsvignette|Illustration du principe de construction d'une forêt aléatoire comme agrégation d'arbre aléatoires. En apprentissage automatique, les forêts d'arbres décisionnels (ou forêts aléatoires de l'anglais random forest classifier) forment une méthode d'apprentissage ensembliste. Ils ont été premièrement proposées par Ho en 1995 et ont été formellement proposées en 2001 par Leo Breiman et Adele Cutler. Cet algorithme combine les concepts de sous-espaces aléatoires et de bagging.
Wearable computerA wearable computer, also known as a body-borne computer, is a computing device worn on the body. The definition of 'wearable computer' may be narrow or broad, extending to smartphones or even ordinary wristwatches. Wearables may be for general use, in which case they are just a particularly small example of mobile computing. Alternatively, they may be for specialized purposes such as fitness trackers. They may incorporate special sensors such as accelerometers, heart rate monitors, or on the more advanced side, electrocardiogram (ECG) and blood oxygen saturation (SpO2) monitors.
Sécurité du patientthumb|Le soin du patient.|alt= La sécurité du patient est une démarche qui vise à éviter à un usager toute atteinte évitable liée aux soins qui lui sont prodigués. Elle est très étroitement liée à la notion de qualité des soins qui est définie par l'OMS comme . Les professionnels de santé doivent savoir évaluer le rapport bénéfice/risque de chaque acte au regard de la gravité de la maladie afin d'offrir au patient la plus grande sécurité possible au cours de son parcours de santé, selon l'adage : « primum non nocere ».
Apprentissage automatiqueL'apprentissage automatique (en anglais : machine learning, « apprentissage machine »), apprentissage artificiel ou apprentissage statistique est un champ d'étude de l'intelligence artificielle qui se fonde sur des approches mathématiques et statistiques pour donner aux ordinateurs la capacité d'« apprendre » à partir de données, c'est-à-dire d'améliorer leurs performances à résoudre des tâches sans être explicitement programmés pour chacune. Plus largement, il concerne la conception, l'analyse, l'optimisation, le développement et l'implémentation de telles méthodes.
Bootstrap aggregatingLe bootstrap aggregating, également appelé bagging (de bootstrap aggregating), est un meta-algorithme d'apprentissage ensembliste conçu pour améliorer la stabilité et la précision des algorithmes d'apprentissage automatique. Il réduit la variance et permet d'éviter le surapprentissage. Bien qu'il soit généralement appliqué aux méthodes d'arbres de décision, il peut être utilisé avec n'importe quel type de méthode. Le bootstrap aggregating est un cas particulier de l'approche d'apprentissage ensembliste.
Classification naïve bayésiennevignette|Exemple de classification naïve bayésienne pour un ensemble de données dont le nombre augmente avec le temps. La classification naïve bayésienne est un type de classification bayésienne probabiliste simple basée sur le théorème de Bayes avec une forte indépendance (dite naïve) des hypothèses. Elle met en œuvre un classifieur bayésien naïf, ou classifieur naïf de Bayes, appartenant à la famille des classifieurs linéaires. Un terme plus approprié pour le modèle probabiliste sous-jacent pourrait être « modèle à caractéristiques statistiquement indépendantes ».
BoostingLe boosting est un domaine de l'apprentissage automatique (branche de l'intelligence artificielle). C'est un principe qui regroupe de nombreux algorithmes qui s'appuient sur des ensembles de classifieurs binaires : le boosting optimise leurs performances. Le principe est issu de la combinaison de classifieurs (appelés également hypothèses). Par itérations successives, la connaissance d'un classifieur faible - weak classifier - est ajoutée au classifieur final - strong classifier.