Mechanics of planar particle motionThis article describes a particle in planar motion when observed from non-inertial reference frames. The most famous examples of planar motion are related to the motion of two spheres that are gravitationally attracted to one another, and the generalization of this problem to planetary motion. See centrifugal force, two-body problem, orbit and Kepler's laws of planetary motion. These problems fall in the general field of analytical dynamics, determining orbits from the given force laws.
Force de CoriolisLa force de Coriolis est une force inertielle agissant perpendiculairement à la direction du mouvement d'un corps en déplacement dans un milieu (un référentiel) lui-même en rotation uniforme, tel que vu par un observateur partageant le même référentiel. Cette « force » est nommée ainsi en l'honneur de l'ingénieur français Gaspard-Gustave Coriolis. Elle n'est pas une « force » au sens strict, soit l'action d'un corps sur un autre, mais plutôt une force fictive résultant du mouvement non linéaire du référentiel lui-même.
Infinitesimal strain theoryIn continuum mechanics, the infinitesimal strain theory is a mathematical approach to the description of the deformation of a solid body in which the displacements of the material particles are assumed to be much smaller (indeed, infinitesimally smaller) than any relevant dimension of the body; so that its geometry and the constitutive properties of the material (such as density and stiffness) at each point of space can be assumed to be unchanged by the deformation.
Local reference frameIn theoretical physics, a local reference frame (local frame) refers to a coordinate system or frame of reference that is only expected to function over a small region or a restricted region of space or spacetime. The term is most often used in the context of the application of local inertial frames to small regions of a gravitational field.
Traînée induiteLa traînée induite, souvent notée Ri, est une force de résistance à l'avancement induite par la portance et qui dépend de certaines caractéristiques de l'aile, notamment de son allongement et de la distribution de la portance en envergure. Elle se distingue des traînées dites « parasites » : de frottement, de séparation, et d'onde. L'allongement effectif utilisé pour le calcul peut être supérieur à l'allongement géométrique (cloison en bout d'aile, ailette marginale ou winglet).
Référentiel (physique)En physique, il est impossible de définir une position ou un mouvement par rapport à l'espace « vide ». Un référentiel est un solide (un ensemble de points fixes entre eux) par rapport auquel on repère une position ou un mouvement. Un dispositif servant d'horloge est également nécessaire pour pouvoir qualifier le mouvement et définir la notion de vitesse. Un exemple classique de référentiel est le référentiel terrestre qui est lié à la Terre.
Physique des particulesLa physique des particules ou la physique subatomique est la branche de la physique qui étudie les constituants élémentaires de la matière et les rayonnements, ainsi que leurs interactions. On l'appelle aussi parfois physique des hautes énergies car de nombreuses particules élémentaires, instables, n'existent pas à l'état naturel et peuvent seulement être détectées lors de collisions à hautes énergies entre particules stables dans les accélérateurs de particules.
Finesse (aérodynamique)La finesse est une caractéristique aérodynamique définie comme le rapport entre la portance et la traînée. Elle est parfois désignée par le terme de langue anglaise signifiant , c'est-à-dire rapport portance/traînée en français. On peut aussi définir de manière équivalente la finesse comme le rapport des coefficients de portance et de traînée , à condition que ces deux coefficients soient rapportés à la même surface. La finesse d'un aérodyne à voilure fixe est le rapport entre sa portance et sa traînée aérodynamique.
Énergie potentielleL'énergie potentielle d'un système physique est l'énergie liée à une interaction, qui a la capacité de se transformer en d'autres formes d'énergie, le plus souvent en énergie cinétique, une énergie de mouvement. La force qui modélise l'interaction est une force conservative c'est-à-dire que son travail ne dépend pas du chemin suivi lors du déplacement, mais uniquement du point de départ et du point d'arrivée : .
Strain energy density functionA strain energy density function or stored energy density function is a scalar-valued function that relates the strain energy density of a material to the deformation gradient. Equivalently, where is the (two-point) deformation gradient tensor, is the right Cauchy–Green deformation tensor, is the left Cauchy–Green deformation tensor, and is the rotation tensor from the polar decomposition of . For an anisotropic material, the strain energy density function depends implicitly on reference vectors or tensors (such as the initial orientation of fibers in a composite) that characterize internal material texture.