Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?
Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur Graph Search.
Flow properties are investigated for a non-crimp glass fabric with large meso-channels designed for high-permeability, as compared to glass twill woven fabric. Saturated and unsaturated permeability are measured through in-plane, unidirectional, constant-pressure flow experiments. Capillary effects are evaluated following a novel approach based on the ratio of unsaturated and saturated permeability for a set of experiments conducted at capillary numbers varying over a large range from ∼4·10-5 to 4·10-1. The mesoscopic pore-space of the compacted fabrics is imaged with X-ray Tomography, and analyzed to propose permeability predictions based on the channels geometry, which correspond well to experimental results. Permeability is governed by viscous flow in the meso-channels. As a result, provided that the capillary number exceeds a threshold value, the permeability can be rather accurately measured in these dual-scale fabrics by carrying out unsaturated measurements, neglecting micro-flow and capillary effects.
François Gallaire, Edouard Boujo, Yves-Marie François Ducimetière
Véronique Michaud, Baris Çaglar, Helena Luisa Teixido Pedarros, Guillaume Clément Broggi