Noncommutative quantum field theoryIn mathematical physics, noncommutative quantum field theory (or quantum field theory on noncommutative spacetime) is an application of noncommutative mathematics to the spacetime of quantum field theory that is an outgrowth of noncommutative geometry and index theory in which the coordinate functions are noncommutative. One commonly studied version of such theories has the "canonical" commutation relation: which means that (with any given set of axes), it is impossible to accurately measure the position of a particle with respect to more than one axis.
Équation de PauliL'équation de Pauli est une équation non relativiste de la mécanique quantique qui correspond à celle de Schrödinger pour les particules de spin 1/2 dans un champ électromagnétique. En 1927, Wolfgang Pauli a postulé cette équation comme étant l'équation de l'électron, puis, en 1928, elle a été démontrée par Paul Dirac comme approximation non relativiste de son équation. En 1969, Jean-Marc Lévy-Leblond l'a redémontrée en linéarisant l'équation de Schrödinger.
Ricci-flat manifoldIn the mathematical field of differential geometry, Ricci-flatness is a condition on the curvature of a (pseudo-)Riemannian manifold. Ricci-flat manifolds are a special kind of Einstein manifold. In theoretical physics, Ricci-flat Lorentzian manifolds are of fundamental interest, as they are the solutions of Einstein's field equations in vacuum with vanishing cosmological constant. In Lorentzian geometry, a number of Ricci-flat metrics are known from works of Karl Schwarzschild, Roy Kerr, and Yvonne Choquet-Bruhat.
Ricci decompositionIn the mathematical fields of Riemannian and pseudo-Riemannian geometry, the Ricci decomposition is a way of breaking up the Riemann curvature tensor of a Riemannian or pseudo-Riemannian manifold into pieces with special algebraic properties. This decomposition is of fundamental importance in Riemannian and pseudo-Riemannian geometry. Let (M,g) be a Riemannian or pseudo-Riemannian n-manifold. Consider its Riemann curvature, as a (0,4)-tensor field.
Relativité doublement restreinteLa relativité doublement restreinte (appelée aussi parfois relativité restreinte déformée) ou DSR (de l'anglais doubly-special relativity ou deformed special relativity) est une théorie physique, s'apparentant par certains aspects à la relativité restreinte. Elle fut proposée à l'origine par Giovanni Amelino-Camelia, mais a été au moins implicite dans un article de Paul Merriam. Elle est fondée sur postulat que — en plus de la vitesse de la lumière — une échelle caractéristique fondée sur l'échelle de Planck doit rester invariante selon les transformations relativistes.