In mathematical physics, noncommutative quantum field theory (or quantum field theory on noncommutative spacetime) is an application of noncommutative mathematics to the spacetime of quantum field theory that is an outgrowth of noncommutative geometry and index theory in which the coordinate functions are noncommutative. One commonly studied version of such theories has the "canonical" commutation relation:
which means that (with any given set of axes), it is impossible to accurately measure the position of a particle with respect to more than one axis. In fact, this leads to an uncertainty relation for the coordinates analogous to the Heisenberg uncertainty principle.
Various lower limits have been claimed for the noncommutative scale, (i.e. how accurately positions can be measured) but there is currently no experimental evidence in favour of such a theory or grounds for ruling them out.
One of the novel features of noncommutative field theories is the UV/IR mixing phenomenon in which the physics at high energies affects the physics at low energies which does not occur in quantum field theories in which the coordinates commute.
Other features include violation of Lorentz invariance due to the preferred direction of noncommutativity. Relativistic invariance can however be retained in the sense of twisted Poincaré invariance of the theory. The causality condition is modified from that of the commutative theories.
Heisenberg was the first to suggest extending noncommutativity to the coordinates as a possible way of removing the infinite quantities appearing in field theories before the renormalization procedure was developed and had gained acceptance. The first paper on the subject was published in 1947 by Hartland Snyder. The success of the renormalization method resulted in little attention being paid to the subject for some time. In the 1980s, mathematicians, most notably Alain Connes, developed noncommutative geometry. Among other things, this work generalized the notion of differential structure to a noncommutative setting.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
La géométrie non commutative, développée par Alain Connes, est une branche des mathématiques, et plus précisément un type de géométrie algébrique distincte de la géométrie algébrique telle qu'on l'entend habituellement (celle développée par Alexandre Grothendieck), car s'intéressant à des objets définis à partir de structures algébriques non commutatives. L'idée principale est qu'un espace au sens de la géométrie usuelle peut être décrit par l'ensemble des fonctions numériques définies sur cet espace.
Leonard Susskind, né le à New York, est un physicien américain qui occupe la chaire Felix Bloch de physique théorique à l'université Stanford, et qui est directeur du Stanford Institute for Theoretical Physics. Ses domaines de recherche incluent la théorie des cordes, la théorie quantique des champs, la mécanique quantique statistique et la cosmologie quantique. Il est membre de la National Academy of Sciences, de l'American Academy of Arts and Sciences, est membre associé de la Perimeter Institute for Theoretical Physics de la Faculté du Canada et professeur distingué de la Korea Institute for Advanced Study.
Alain Connes est un mathématicien français né le à Draguignan, dans le Var. Il a révolutionné la théorie des algèbres de von Neumann et résolu la plupart des problèmes posés dans ce domaine, notamment la classification des . Pour ces travaux, il a reçu la médaille Fields en 1982. Alain Connes est un ancien élève du lycée Saint-Charles de Marseille. Il est admis en en classes préparatoires au lycée Thiers, où il prépare le concours de l'École normale supérieure. Il y est admis en 1966.
The hunt for exotic quantum phase transitions described by emergent fractionalized de-grees of freedom coupled to gauge fields requires a precise determination of the fixed point structure from the field theoretical side, and an extreme sensitivity to weak ...
Conformal Field Theories (CFTs) are crucial for our understanding of Quantum Field Theory (QFT). Because of their powerful symmetry properties, they play the role of signposts in the space of QFTs. Any method that gives us information about their structure ...
EPFL2022
The boundary correlation functions for a quantum field theory (QFT) in a fixed anti-de Sitter (AdS) background should reduce to S-matrix elements in the flat-space limit. We consider this procedure in detail for four-point functions. With minimal assumptio ...