Accelerated Stochastic Matrix Inversion: General Theory and Speeding up BFGS Rules for Faster Second-Order Optimization
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Non-convex constrained optimization problems have become a powerful framework for modeling a wide range of machine learning problems, with applications in k-means clustering, large- scale semidefinite programs (SDPs), and various other tasks. As the perfor ...
The task of discovering equivalent entities in knowledge graphs (KGs), so-called KG entity alignment, has drawn much attention to overcome the incompleteness problem of KGs. The majority of existing techniques learns the pointwise representations of entiti ...
Randomized trace estimation is a popular and well-studied technique that approximates the trace of a large-scale matrix B by computing the average of x(T) Bx for many samples of a random vector X. Often, B is symmetric positive definite (SPD) but a number ...
Modern optimization is tasked with handling applications of increasingly large scale, chiefly due to the massive amounts of widely available data and the ever-growing reach of Machine Learning. Consequently, this area of research is under steady pressure t ...
In this thesis we propose and analyze algorithms for some numerical linear algebra tasks: finding low-rank approximations of matrices, computing matrix functions, and estimating the trace of matrices.In the first part, we consider algorithms for building l ...
In this thesis, we reveal that supervised learning and inverse problems share similar mathematical foundations. Consequently, we are able to present a unified variational view of these tasks that we formulate as optimization problems posed over infinite-di ...
This paper is concerned with two improved variants of the Hutch++ algorithm for estimating the trace of a square matrix, implicitly given through matrix-vector products. Hutch++ combines randomized low-rank approximation in a first phase with stochastic tr ...
The Schur decomposition of a square matrix A is an important intermediate step of state-of-the-art numerical algorithms for addressing eigenvalue problems, matrix functions, and matrix equations. This work is concerned with the following task: Compute a (m ...
This paper presents a unifying framework for the form-finding and topology-finding of tensegrity structures. The novel computational framework is based on rank-constrained linear matrix inequalities. For form-finding, given the topology (i.e., member conne ...
Functional connectomes (FCs) containing pairwise estimations of functional couplings between pairs of brain regions are commonly represented by correlation matrices. As symmetric positive definite matrices, FCs can be transformed via tangent space projecti ...