Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?
Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur Graph Search.
This paper presents a unifying framework for the form-finding and topology-finding of tensegrity structures. The novel computational framework is based on rank-constrained linear matrix inequalities. For form-finding, given the topology (i.e., member connectivities), the determination of the member force densities is formulated into a linear matrix inequality (LMI) problem with a constraint on the rank of the force density matrix. The positive semi-definiteness and rank deficiency condition of the force density matrix are well managed by the rank-constrained LMI-based formulation. A Newton-like algorithm is employed to solve the rank-constrained LMI problem. Two methods, named direct method and indirect method, are proposed to determine the nodal coordinates once the force densities have been obtained. For topology-finding, given the geometry (i.e., nodal coordinates), the determination of the topology is also formulated into an LMI problem with a constraint on the rank of the tangent stiffness matrix. Numerical examples demonstrate that different types of form-finding problems (such as tensegrity structures with single and with multiple self-stress states, symmetric and irregular tensegrity structures) can be uniformly and efficiently solved by the proposed approach. Furthermore, three well-known tensegrity structures are reproduced to verify the effectiveness of the proposed formulation on the topology-finding of tensegrity structures. (C) 2021 Elsevier Ltd. All rights reserved.
Alireza Karimi, Philippe Louis Schuchert