Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?
Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur Graph Search.
Causal consistency is an attractive consistency model for geo-replicated data stores. It is provably the strongest model that tolerates network partitions. It avoids the long latencies associated with strong consistency, and, especially when using read-only transactions (ROTs), it prevents many of the anomalies of weaker consistency models. Recent work has shown that causal consistency allows "latency-optimal" ROTs, that are nonblocking, single-round and single-version in terms of communication. On the surface, this latency optimality is very appealing, as the vast majority of applications are assumed to have read-dominated workloads. In this paper, we show that such "latency-optimal" ROTs induce an extra overhead on writes that is so high that it actually jeopardizes performance even in read-dominated workloads. We show this result from a practical as well as from a theoretical angle. We present the Contrarian protocol that implements "almost latency-optimal" ROTs, but that does not impose on the writes any of the overheads incurred by latency-optimal protocols. In Contrarian, ROTs are nonblocking and single-version, but they require two rounds of client-server communication. We experimentally show that this protocol not only achieves higher throughput, but, surprisingly, also provides better latencies for all but the lowest loads and the most read-heavy workloads. We furthermore prove that the extra overhead imposed on writes by latency-optimal ROTs is inherent, i.e., it is not an artifact of the design we consider, and cannot be avoided by any implementation of latency-optimal ROTs. We show in particular that this overhead grows linearly with the number of clients.
, ,