MagnétostrictionLa magnétostriction désigne la propriété que possèdent les matériaux ferromagnétiques de se déformer en fonction de l'orientation de leur aimantation, par exemple sous l'influence d'un champ magnétique. Les matériaux ferromagnétiques présentent aussi un effet magnétostrictif inverse, appelé effet magnéto-mécanique, qui se caractérise par la modification de la susceptibilité magnétique, voire de l'aimantation, en présence de contraintes mécaniques dans le matériau.
Inverse magnetostrictive effectThe inverse magnetostrictive effect, magnetoelastic effect or Villari effect, after its discoverer Emilio Villari, is the change of the magnetic susceptibility of a material when subjected to a mechanical stress. The magnetostriction characterizes the shape change of a ferromagnetic material during magnetization, whereas the inverse magnetostrictive effect characterizes the change of sample magnetization (for given magnetizing field strength ) when mechanical stresses are applied to the sample.
Single domain (magnetic)In magnetism, single domain refers to the state of a ferromagnet (in the broader meaning of the term that includes ferrimagnetism) in which the magnetization does not vary across the magnet. A magnetic particle that stays in a single domain state for all magnetic fields is called a single domain particle (but other definitions are possible; see below). Such particles are very small (generally below a micrometre in diameter). They are also very important in a lot of applications because they have a high coercivity.
AimantationDans la langue courante, l'aimantation d'un objet est le fait qu'il soit aimanté ou bien le processus par lequel il le devient. En physique, l'aimantation est de plus, et surtout, une grandeur vectorielle qui caractérise à l'échelle macroscopique l'orientation et l'intensité de son aimantation au premier des deux sens précédents. Elle a comme origine les courants microscopiques résultant du mouvement des électrons dans l'atome (moment magnétique orbital des électrons), ainsi que le moment magnétique de spin des électrons ou des noyaux atomiques.
FerromagnétismeLe ferromagnétisme est le mécanisme fondamental par lequel certains matériaux (fer, cobalt, nickel...) sont attirés par des aimants ou forment des aimants permanents. On distingue en physique différents types de magnétismes. Le ferromagnétisme (qui inclut le ferrimagnétisme) se trouve être celui à l’origine des champs magnétiques les plus importants : c’est celui qui crée des forces suffisamment importantes pour être senties et qui est responsable du phénomène bien connu de magnétisme dans les aimants de la vie quotidienne.
Moment magnétiqueEn physique, le moment magnétique est une grandeur vectorielle qui permet de caractériser l'intensité d'une source magnétique. Cette source peut être un courant électrique, ou bien un objet aimanté. L'aimantation est la distribution spatiale du moment magnétique. Le moment magnétique d'un corps se manifeste par la tendance qu'a ce corps à s'aligner dans le sens d'un champ magnétique, c'est par exemple le cas de l'aiguille d'une boussole : le moment que subit l'objet est égal au produit vectoriel de son moment magnétique par le champ magnétique dans lequel il est placé.
Champ magnétiqueEn physique, dans le domaine de l'électromagnétisme, le champ magnétique est une grandeur ayant le caractère d'un champ vectoriel, c'est-à-dire caractérisée par la donnée d'une norme, d’une direction et d’un sens, définie en tout point de l'espace et permettant de modéliser et quantifier les effets magnétiques du courant électrique ou des matériaux magnétiques comme les aimants permanents.
Champ magnétique terrestreLe champ magnétique terrestre, aussi appelé bouclier terrestre, est un champ magnétique présent dans un vaste espace autour de la Terre (de manière non uniforme du fait de son interaction avec le vent solaire) ainsi que dans la croûte et le manteau. Il a son origine dans le noyau externe, par un mécanisme de dynamo auto-excitée. Dynamo terrestre Selon les études de John Tarduno de l'université de Rochester (États-Unis), la Terre possédait déjà un champ magnétique il y a 3,45 milliards d'années.
Couplage scalaireLe couplage scalaire, noté J et aussi appelé couplage dipôle-dipôle indirect ou juste couplage, est une interaction entre plusieurs spins à travers les liaisons chimiques. C'est une interaction indirecte entre deux spins nucléaires qui provient des interactions hyperfines entre les noyaux et la densité électronique locale et provoque un éclatement du signal RMN. Le couplage scalaire contient des informations sur la distance à travers les liaisons chimiques et les angles entre ces liaisons.
Nanoélectroniquevignette|Structure d'un transistor FinFET La nanoélectronique fait référence à l'utilisation des nanotechnologies dans la conception des composants électroniques, tels que les transistors. Bien que le terme de nanotechnologie soit généralement utilisé pour des technologies dont la taille est inférieure à environ , la nanoélectronique concerne des composants si petits qu'il est nécessaire de prendre en compte les interactions interatomiques et les phénomènes quantiques.