Deep learning on graph for semantic segmentation of point cloud
Publications associées (96)
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
In the domains of machine learning, data science and signal processing, graph or network data, is becoming increasingly popular. It represents a large portion of the data in computer, transportation systems, energy networks, social, biological, and other s ...
We exhibit an unambiguous k-DNF formula that requires CNF width (Omega) over tilde (k(2)), which is optimal up to logarithmic factors. As a consequence, we get a near-optimal solution to the Alon-Saks-Seymour problem in graph theory (posed in 1991), which ...
Recent years have witnessed a rise in real-world data captured with rich structural information that can be better depicted by multi-relational or heterogeneous graphs.However, research on relational representation learning has so far mostly focused on the ...
We consider the problem of learning implicit neural representations (INRs) for signals on non-Euclidean domains. In the Euclidean case, INRs are trained on a discrete sampling of a signal over a regular lattice. Here, we assume that the continuous signal e ...
The International Committee on Intellectual Cooperation (ICIC) is often framed as a step in the constitution of a “League of Minds” – a place where scientists and writers reign, and a necessary part of a successful and harmonious “League of Nations” – but ...
Spectral-based graph neural networks (SGNNs) have been attracting increasing attention in graph representation learning. However, existing SGNNs are limited in implementing graph filters with rigid transforms and cannot adapt to signals residing on graphs ...
Selective attention is a fundamental cognitive mechanism that allows our brain to preferentially process relevant sensory information, while filtering out distracting information. Attention is thought to flexibly gate the communication of irrelevant inform ...
Graph neural networks (GNN) are very popular methods in machine learning and have been applied very successfully to the prediction of the properties of molecules and materials. First-order GNNs are well known to be incomplete, i.e. there exist graphs that ...
Suppose that the vertices of a graph G are colored with two colors in an unknown way. The color that occurs on more than half of the vertices is called the majority color (if it exists), and any vertex of this color is called a majority vertex. We study th ...
Text-based games (TBGs) have emerged as useful benchmarks for evaluating progress at the intersection of grounded language understanding and reinforcement learning (RL). Recent work has proposed the use of external knowledge to improve the efficiency of RL ...