Fonction booléennevignette|Arbre de décision binaire Une fonction booléenne est une fonction prenant en entrée une liste de bits et donnant en sortie un unique bit. Les fonctions booléennes sont très utilisées en informatique théorique, notamment en théorie de la complexité et en cryptologie (par exemple dans les boîtes-S et les chiffrements par flot -- fonction de filtrage ou de combinaison de registres à décalage à rétroaction linéaire). Une fonction booléenne est une fonction de dans où désigne le corps fini à 2 éléments.
Algèbre de Boole (logique)Lalgèbre de Boole, ou calcul booléen, est la partie des mathématiques qui s'intéresse à une approche algébrique de la logique, vue en termes de variables, d'opérateurs et de fonctions sur les variables logiques, ce qui permet d'utiliser des techniques algébriques pour traiter les expressions à deux valeurs du calcul des propositions. Elle fut lancée en 1854 par le mathématicien britannique George Boole. L'algèbre de Boole trouve de nombreuses applications en informatique et dans la conception des circuits électroniques.
Logic optimizationLogic optimization is a process of finding an equivalent representation of the specified logic circuit under one or more specified constraints. This process is a part of a logic synthesis applied in digital electronics and integrated circuit design. Generally, the circuit is constrained to a minimum chip area meeting a predefined response delay. The goal of logic optimization of a given circuit is to obtain the smallest logic circuit that evaluates to the same values as the original one.
Formule booléenne quantifiéeEn théorie de la complexité, en informatique théorique, en logique mathématique, une formule booléenne quantifiée (ou formule QBF pour quantified binary formula en anglais) est une formule de la logique propositionnelle où les variables propositionnelles sont quantifiées. Par exemple, est une formule booléenne quantifiée et se lit « pour toute valeur booléenne x, il existe une valeur booléenne y et une valeur booléenne z telles que ((x ou z) et y) ».
Circuit booléenvignette|Exemple circuit booléen à deux entrées et une sortie. Le circuit contient 3 portes logique. En théorie de la complexité, un circuit booléen est un modèle de calcul constitué de portes logiques (fonctions logiques) reliées entre elles. C'est une façon de représenter une fonction booléenne. Un circuit booléen peut être utilisé pour reconnaître un langage formel, c'est-à-dire décider si un mot appartient ou non à un langage particulier. Les caractéristiques des circuits qui reconnaissent un langage permettent de définir (ou redéfinir) des classes de complexité.
Register Transfer LevelRegister Transfer Level (RTL) est une méthode de description des architectures microélectroniques. Dans la conception RTL, le comportement d'un circuit est défini en termes d'envois de signaux ou de transferts de données entre registres, et les opérations logiques effectuées sur ces signaux. Le RTL est utilisé dans les langages de description matérielle (HDL) comme Verilog et VHDL pour créer des représentations d'un circuit à haut niveau, à partir duquel les représentations à plus bas niveau et le câblage réel peuvent être dérivés.
Problème SATvignette|Une instance du Sudoku peut être transformée en une formule de logique propositionnelle à satisfaire. Une assignation des variables propositionnelles donne une grille complétée. En informatique théorique, le problème SAT ou problème de satisfaisabilité booléenne est le problème de décision, qui, étant donné une formule de logique propositionnelle, détermine s'il existe une assignation des variables propositionnelles qui rend la formule vraie. Ce problème est important en théorie de la complexité.
Langage de description de matérielUn langage de description de matériel, ou du matériel (ou HDL pour hardware description language en anglais) est un langage informatique permettant la description d'un circuit électronique au niveau des transferts de registres (RTL). Celui-ci peut décrire les fonctions réalisées par le circuit (description comportementale) ou les portes logiques utilisées par le circuit (description structurelle). Il est possible d'observer le fonctionnement d'un circuit électronique modélisé dans un langage de description grâce à la simulation.
Fonction paritéLa fonction parité est une fonction booléenne. La sortie vaut 1, si et seulement si, le nombre de 1 dans l'entrée est impaire. Un cas particulier est la fonction parité avec deux entrées, qui est connue sous le nom de XOR. Cette fonction est centrale dans l'étude des circuits booléens. Le résultat est parfois appelé bit de parité. La fonction parité un exemple de fonction qui n'est pas dans la classe de complexité nommée AC0. Ceci a été démontré par Furst, Saxe et Sipser, et indépendamment à Miklós Ajtai. C
Boolean differential calculusBoolean differential calculus (BDC) (German: Boolescher Differentialkalkül (BDK)) is a subject field of Boolean algebra discussing changes of Boolean variables and Boolean functions. Boolean differential calculus concepts are analogous to those of classical differential calculus, notably studying the changes in functions and variables with respect to another/others. The Boolean differential calculus allows various aspects of dynamical systems theory such as automata theory on finite automata Petri net theory supervisory control theory (SCT) to be discussed in a united and closed form, with their individual advantages combined.