Analyse numériqueL’analyse numérique est une discipline à l'interface des mathématiques et de l'informatique. Elle s’intéresse tant aux fondements qu’à la mise en pratique des méthodes permettant de résoudre, par des calculs purement numériques, des problèmes d’analyse mathématique. Plus formellement, l’analyse numérique est l’étude des algorithmes permettant de résoudre numériquement par discrétisation les problèmes de mathématiques continues (distinguées des mathématiques discrètes).
Asperity (materials science)In materials science, asperity, defined as "unevenness of surface, roughness, ruggedness" (from the Latin asper—"rough"), has implications (for example) in physics and seismology. Smooth surfaces, even those polished to a mirror finish, are not truly smooth on a microscopic scale. They are rough, with sharp, rough or rugged projections, termed "asperities". Surface asperities exist across multiple scales, often in a self affine or fractal geometry.
Lemme de HartogsEn mathématiques, le lemme de Hartogs est un résultat fondamental sur les fonctions de plusieurs variables complexes, énonçant que les concepts de singularité isolée et de singularité supprimable coïncident pour les fonctions analytiques avec n > 1 variables complexes. Ce résultat a été attribué à Friedrich Hartogs, mais il est aussi connu sous le nom de théorème d'Osgood. Plus précisément, sur Cn pour n ≥ 2, n'importe quelle fonction analytique F définie sur le complémentaire d'un ensemble compact K peut être étendue (de manière unique) à une fonction analytique sur Cn.
Fracture en bois vertvignette|372x372px|fracture en bois vert du fémur Une fracture en bois vert est un type de fracture osseuse fréquent chez l'enfant. C'est une fracture située au niveau de la diaphyse de l'os due à une contrainte en hyperflexion. Il s'agit d'une fracture d'une seule corticale avec une rupture du périoste en regard, tandis que le périoste et la corticale du côté de la concavité sont intacts. C'est une fracture stable grâce à la persistance de la charnière périostée, avec néanmoins un risque de déplacement secondaire.
Additive Schwarz methodIn mathematics, the additive Schwarz method, named after Hermann Schwarz, solves a boundary value problem for a partial differential equation approximately by splitting it into boundary value problems on smaller domains and adding the results. Partial differential equations (PDEs) are used in all sciences to model phenomena. For the purpose of exposition, we give an example physical problem and the accompanying boundary value problem (BVP). Even if the reader is unfamiliar with the notation, the purpose is merely to show what a BVP looks like when written down.