Publication

Adaptation of Multiple Sound Source Localization Neural Networks with Weak Supervision and Domain-Adversarial Training

Jean-Marc Odobez, Petr Motlicek, Weipeng He
2019
Article de conférence
Résumé

Despite the recent success of deep neural network-based approaches in sound source localization, these approaches suffer the limitations that the required annotation process is costly, and the mismatch between the training and test conditions undermines the performance. This paper addresses the question of how models trained with simulation can be exploited for multiple sound source localization in real scenarios by domain adaptation. In particular, two domain adaptation methods are investigated: weak supervision and domain-adversarial training. Our experiments show that the weak supervision with the knowledge of the number of sources can significantly improve the performance of an unadapted model. However, the domain-adversarial training does not yield significant improvement for this particular problem

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Concepts associés (22)
Apprentissage profond
L'apprentissage profond ou apprentissage en profondeur (en anglais : deep learning, deep structured learning, hierarchical learning) est un sous-domaine de l’intelligence artificielle qui utilise des réseaux neuronaux pour résoudre des tâches complexes grâce à des architectures articulées de différentes transformations non linéaires. Ces techniques ont permis des progrès importants et rapides dans les domaines de l'analyse du signal sonore ou visuel et notamment de la reconnaissance faciale, de la reconnaissance vocale, de la vision par ordinateur, du traitement automatisé du langage.
Réseau de neurones à propagation avant
Un réseau de neurones à propagation avant, en anglais feedforward neural network, est un réseau de neurones artificiels acyclique, se distinguant ainsi des réseaux de neurones récurrents. Le plus connu est le perceptron multicouche qui est une extension du premier réseau de neurones artificiel, le perceptron inventé en 1957 par Frank Rosenblatt. vignette|Réseau de neurones à propagation avant Le réseau de neurones à propagation avant est le premier type de réseau neuronal artificiel conçu. C'est aussi le plus simple.
Réseau de neurones artificiels
Un réseau de neurones artificiels, ou réseau neuronal artificiel, est un système dont la conception est à l'origine schématiquement inspirée du fonctionnement des neurones biologiques, et qui par la suite s'est rapproché des méthodes statistiques. Les réseaux de neurones sont généralement optimisés par des méthodes d'apprentissage de type probabiliste, en particulier bayésien.
Afficher plus
Publications associées (63)

Infusing structured knowledge priors in neural models for sample-efficient symbolic reasoning

Mattia Atzeni

The ability to reason, plan and solve highly abstract problems is a hallmark of human intelligence. Recent advancements in artificial intelligence, propelled by deep neural networks, have revolutionized disciplines like computer vision and natural language ...
EPFL2024

Reduced Training Data for Laser Ultrasound Signal Interpretation by Neural Networks

Romain Christophe Rémy Fleury, Janez Rus

The performance of machine learning algorithms is conditioned by the availability of training datasets, which is especially true for the field of nondestructive evaluation. Here we propose one reconfigurable specimen instead of numerous reference specimens ...
2024

Fashioning Creative Expertise with Generative AI: Graphical Interfaces for GAN-Based Design Space Exploration Better Support Ideation Than Text Prompts for Diffusion Models

Pierre Dillenbourg, Richard Lee Davis, Kevin Gonyop Kim, Thiemo Wambsganss, Wei Jiang

This paper investigates the potential impact of deep generative models on the work of creative professionals. We argue that current generative modeling tools lack critical features that would make them useful creativity support tools, and introduce our own ...
2024
Afficher plus
MOOCs associés (23)
Neuronal Dynamics 2- Computational Neuroscience: Neuronal Dynamics of Cognition
This course explains the mathematical and computational models that are used in the field of theoretical neuroscience to analyze the collective dynamics of thousands of interacting neurons.
Neuronal Dynamics 2- Computational Neuroscience: Neuronal Dynamics of Cognition
This course explains the mathematical and computational models that are used in the field of theoretical neuroscience to analyze the collective dynamics of thousands of interacting neurons.
Neuronal Dynamics - Computational Neuroscience of Single Neurons
The activity of neurons in the brain and the code used by these neurons is described by mathematical neuron models at different levels of detail.
Afficher plus

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.