Apprentissage profondL'apprentissage profond ou apprentissage en profondeur (en anglais : deep learning, deep structured learning, hierarchical learning) est un sous-domaine de l’intelligence artificielle qui utilise des réseaux neuronaux pour résoudre des tâches complexes grâce à des architectures articulées de différentes transformations non linéaires. Ces techniques ont permis des progrès importants et rapides dans les domaines de l'analyse du signal sonore ou visuel et notamment de la reconnaissance faciale, de la reconnaissance vocale, de la vision par ordinateur, du traitement automatisé du langage.
Domaine de premier niveauUn domaine de premier niveau ou un domaine de tête (top-level domain, ou TLD), aussi appelé une extension, est, dans le système de noms de domaine internet, un sous-domaine de la racine. Dans un nom de domaine, le domaine de premier niveau est généralement le dernier élément du nom de domaine (exemple : dans , le domaine de premier niveau est ). vignette|Exemples de domaines de premier niveau. Le dernier point est optionnel. À l'origine, il indiquait la fin du nom de domaine. Par simplicité, l'usage courant est de ne plus l'indiquer.
Nom de domaine internationaliséUn nom de domaine internationalisé est un nom de domaine Internet qui peut contenir des caractères non définis par le standard ASCII. Parmi ces caractères, on trouve notamment les lettres accentuées courantes dans de nombreuses langues européennes, ainsi que d'autres caractères n'appartenant pas à l'alphabet latin. Plusieurs registres de noms de domaine autorisent aujourd'hui les noms de domaine internationalisés, par exemple .de (Allemagne), .eu (Union européenne).
Réseau de neurones artificielsUn réseau de neurones artificiels, ou réseau neuronal artificiel, est un système dont la conception est à l'origine schématiquement inspirée du fonctionnement des neurones biologiques, et qui par la suite s'est rapproché des méthodes statistiques. Les réseaux de neurones sont généralement optimisés par des méthodes d'apprentissage de type probabiliste, en particulier bayésien.
Domaine de premier niveau génériqueUn domaine de premier niveau générique (en anglais generic top-level domain ou gTLD) est un type de domaines de premier niveau (TLD) maintenus par lInternet Assigned Numbers Authority (IANA) pour une utilisation dans le système de nom de domaine d'Internet. Un domaine de premier niveau est le suffixe à la fin de l'adresse d'un site web, par exemple, dans fr.wikipedia.org, le domaine de premier niveau est .org. Un domaine de premier niveau générique est un domaine de premier niveau destiné à accueillir des sous-domaines possédant une caractéristique commune autre que la relation à un pays.
Nom de domaineUn nom de domaine (NDD en notation abrégée française ou DN pour Domain Name en anglais) est, dans le système de noms de domaine DNS, un identifiant de domaine internet. Un domaine est un ensemble d'ordinateurs reliés à Internet et possédant une caractéristique commune. Par exemple, un domaine tel que .fr est l'ensemble des ordinateurs hébergeant des activités pour des personnes ou des organisations qui se sont enregistrées auprès de l'Association française pour le nommage Internet en coopération (AFNIC) qui est le registre responsable du domaine de premier niveau .
Domaine de premier niveau nationalUn domaine de premier niveau national (en anglais country code top-level domain ou ccTLD) est un type de domaines de premier niveau (TLD) maintenus par lInternet Assigned Numbers Authority (IANA) pour une utilisation dans le système de nom de domaine d'Internet. Un domaine de premier niveau est le suffixe à la fin de l'adresse d'un site web, par exemple, dans fr.wikipedia.org, le domaine de premier niveau est .org. Un domaine de premier niveau national est un domaine de premier niveau associé à un pays, un État souverain ou un territoire dépendant.
Algorithme du gradientLalgorithme du gradient, aussi appelé algorithme de descente de gradient, désigne un algorithme d'optimisation différentiable. Il est par conséquent destiné à minimiser une fonction réelle différentiable définie sur un espace euclidien (par exemple, , l'espace des n-uplets de nombres réels, muni d'un produit scalaire) ou, plus généralement, sur un espace hilbertien. L'algorithme est itératif et procède donc par améliorations successives. Au point courant, un déplacement est effectué dans la direction opposée au gradient, de manière à faire décroître la fonction.
Intelligence artificiellevignette|redresse=0.8|Les assistants personnels intelligents sont l'une des applications concrètes de l'intelligence artificielle dans les années 2010. L'intelligence artificielle (IA) est un ensemble de théories et de techniques visant à réaliser des machines capables de simuler l'intelligence humaine. Souvent classée dans le groupe des mathématiques et des sciences cognitives, elle fait appel à la neurobiologie computationnelle (particulièrement aux réseaux neuronaux) et à la logique mathématique (partie des mathématiques et de la philosophie).
Adversarial machine learningAdversarial machine learning is the study of the attacks on machine learning algorithms, and of the defenses against such attacks. A survey from May 2020 exposes the fact that practitioners report a dire need for better protecting machine learning systems in industrial applications. To understand, note that most machine learning techniques are mostly designed to work on specific problem sets, under the assumption that the training and test data are generated from the same statistical distribution (IID).