Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?
Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur Graph Search.
We present an end-to-end deep Convolutional Neural Network called Convolutional Relational Machine (CRM) for recognizing group activities that utilizes the information in spatial relationsbetween individualpersons in image or video. It learns to produce an intermediate spatial representation (activity map) based on individual and group activities. A multi-stage refinement component is responsible for decreasingthe incorrectpredictions in the activity map. Finally, an aggregationcomponent uses the refined information to recognize group activities. Experimental results demonstrate the constructive contribution of the information extracted and represented in the form of the activity map. CRM shows advantages over state-of-the-artmodels on Volleyball and Collective Activity datasets.
Marilyne Andersen, Forrest Simon Webler
Wulfram Gerstner, Alireza Modirshanechi