La théorie de l'information, sans précision, est le nom usuel désignant la théorie de l'information de Shannon, qui est une théorie utilisant les probabilités pour quantifier le contenu moyen en information d'un ensemble de messages, dont le codage informatique satisfait une distribution statistique que l'on pense connaître. Ce domaine trouve son origine scientifique avec Claude Shannon qui en est le père fondateur avec son article A Mathematical Theory of Communication publié en 1948.
Parmi les branches importantes de la théorie de l'information de Shannon, on peut citer :
le codage de l'information ;
la mesure quantitative de redondance d'un texte ;
la compression de données ;
la cryptographie.
Dans un sens plus général, une théorie de l'information vise à quantifier et qualifier la notion de contenu en information présent dans un ensemble de données dans un certain contexte. Elle est à distinguer la théorie algorithmique de l'information, créée par Kolmogorov, Solomonoff et Chaitin au début des années 1960.
Mesurer l'information a été rendu nécessaire par les recherches d'efficacité sur les systèmes de télécommunication. L'origine de ces recherches remonte aux études entreprises dès la fin du , en physique et en mathématique par Boltzmann et Markov sur la notion de probabilité d'un événement et les possibilités de mesure de cette probabilité. Plus récemment, avant la Seconde Guerre mondiale, les contributions les plus importantes sont dues à la collaboration des mathématiciens et des ingénieurs des télécommunications, qui ont été amenés à envisager les propriétés théoriques de tout système de signaux utilisé par les opérateurs, vivants ou techniques, à des fins de communication entre un émetteur et un récepteur, par un canal bruité ou non, dans un contexte donné.
vignette|droite|Modèle de la communication de Shannon et Weaver.
À la suite des travaux de Hartley (1928), Shannon (1948) détermine l'information comme grandeur mesurable, sinon observable et formalise avec elle une théorie de la communication qu'il élabore avec Warren Weaver.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Dans une première partie, nous étudierons d’abord comment résoudre de manière très concrète un problème au moyen d’un algorithme, ce qui nous amènera dans un second temps à une des grandes questions d
Dans une première partie, nous étudierons d’abord comment résoudre de manière très concrète un problème au moyen d’un algorithme, ce qui nous amènera dans un second temps à une des grandes questions d
This course will provide the fundamental knowledge in neuroscience required to
understand how the brain is organised and how function at multiple scales is
integrated to give rise to cognition and beh
Today one is able to manipulate matter at the nanoscale were quantum behavior becomes important and possibly information processing will have to take into account laws of quantum physics. We introduce
Information is processed in physical devices. In the quantum regime the concept of classical bit is replaced by the quantum bit. We introduce quantum principles, and then quantum communications, key d
D'une part, le cours aborde: (1) la notion d'algorithme et de représentation de l'information, (2) l'échantillonnage d'un signal et la compression de données et (3) des aspects
liés aux systèmes: ordi
En théorie de l'information, l'entropie de Shannon, ou plus simplement entropie, est une fonction mathématique qui, intuitivement, correspond à la quantité d'information contenue ou délivrée par une source d'information. Cette source peut être un texte écrit dans une langue donnée, un signal électrique ou encore un fichier informatique quelconque (suite d'octets). Elle a été introduite par Claude Shannon. Du point de vue d'un récepteur, plus la source émet d'informations différentes, plus l'entropie (ou incertitude sur ce que la source émet) est grande.
vignette|redresse|Code morse international. En sciences et techniques, notamment en informatique et en théorie de l'information, un code est une règle de transcription qui, à tout symbole d'un jeu de caractères (alphabet source) assigne de manière univoque un caractère ou une chaîne de caractères pris dans un jeu de caractères éventuellement différent (alphabet cible). Un exemple est le code morse qui établit une relation entre lettres de l'alphabet latin et des séquences de sons courts et longs.
En informatique théorique et en mathématiques, plus précisément en théorie de l'information, la complexité de Kolmogorov, ou complexité aléatoire, ou complexité algorithmique d'un objet — nombre, , chaîne de caractères — est la taille du plus petit algorithme (dans un certain langage de programmation fixé) qui engendre cet objet. Elle est nommée d'après le mathématicien Andreï Kolmogorov, qui publia sur le sujet dès 1963. Elle est aussi parfois nommée complexité de Kolmogorov-Solomonoff.
Information theory has allowed us to determine the fundamental limit of various communication and algorithmic problems, e.g., the channel coding problem, the compression problem, and the hypothesis testing problem. In this work, we revisit the assumptions ...
EPFL2024
This dataset contains a collection of ultrafast ultrasound acquisitions from nine volunteers and the CIRS 054G phantom. For a comprehensive understanding of the dataset, please refer to the paper: Viñals, R.; Thiran, J.-P. A KL Divergence-Based Loss for In ...
EPFL Infoscience2024
This dataset contains a collection of ultrafast ultrasound acquisitions from nine volunteers and the CIRS 054G phantom. For a comprehensive understanding of the dataset, please refer to the paper: Viñals, R.; Thiran, J.-P. A KL Divergence-Based Loss for In ...