Bayesian probabilityBayesian probability (ˈbeɪziən or ˈbeɪʒən ) is an interpretation of the concept of probability, in which, instead of frequency or propensity of some phenomenon, probability is interpreted as reasonable expectation representing a state of knowledge or as quantification of a personal belief. The Bayesian interpretation of probability can be seen as an extension of propositional logic that enables reasoning with hypotheses; that is, with propositions whose truth or falsity is unknown.
ApproximationUne approximation est une représentation imprécise ayant toutefois un lien étroit avec la quantité ou l’objet qu’elle reflète : approximation d’un nombre (de π par 3,14, de la vitesse instantanée d’un véhicule par sa vitesse moyenne entre deux points), d’une fonction mathématique, d’une solution d’un problème d’optimisation, d’une forme géométrique, d’une loi physique. Lorsqu’une partie de l’information nécessaire fait défaut, une approximation peut se substituer à une représentation exacte.
Effective methodIn logic, mathematics and computer science, especially metalogic and computability theory, an effective method or effective procedure is a procedure for solving a problem by any intuitively 'effective' means from a specific class. An effective method is sometimes also called a mechanical method or procedure. The definition of an effective method involves more than the method itself. In order for a method to be called effective, it must be considered with respect to a class of problems.
Ricci calculusIn mathematics, Ricci calculus constitutes the rules of index notation and manipulation for tensors and tensor fields on a differentiable manifold, with or without a metric tensor or connection. It is also the modern name for what used to be called the absolute differential calculus (the foundation of tensor calculus), developed by Gregorio Ricci-Curbastro in 1887–1896, and subsequently popularized in a paper written with his pupil Tullio Levi-Civita in 1900.
ComputabilityComputability is the ability to solve a problem in an effective manner. It is a key topic of the field of computability theory within mathematical logic and the theory of computation within computer science. The computability of a problem is closely linked to the existence of an algorithm to solve the problem. The most widely studied models of computability are the Turing-computable and μ-recursive functions, and the lambda calculus, all of which have computationally equivalent power.
Calcul tensorielEn physique théorique, des équations différentielles, posées en termes de champs tensoriels, sont une manière très générale pour exprimer les relations à la fois géométriques par nature et liées au calcul différentiel. Pour formuler de telles équations, il faut connaître la dérivée covariante. Cela permet d'exprimer la variation d'un champ tensoriel le long d'un champ vectoriel. La notion d'origine du calcul différentiel absolu, plus tard renommé calcul tensoriel, amena à l'isolation du concept géométrique de connexion.
Distance en variation totale (probabilités)En mathématiques et plus particulièrement en théorie des probabilités et en statistique, la distance en variation totale (ou distance de variation totale ou encore distance de la variation totale) désigne une distance statistique définie sur l'ensemble des mesures de probabilité d'un espace probabilisable. Soit deux mesures de probabilité sur un espace probabilisable . La distance en variation totale entre et est la quantité Il arrive que le facteur 2 n'apparaisse pas chez certains auteurs.
Elliptic complexIn mathematics, in particular in partial differential equations and differential geometry, an elliptic complex generalizes the notion of an elliptic operator to sequences. Elliptic complexes isolate those features common to the de Rham complex and the Dolbeault complex which are essential for performing Hodge theory. They also arise in connection with the Atiyah-Singer index theorem and Atiyah-Bott fixed point theorem. If E0, E1, ...