Algorithme d'apprentissage incrémentalEn informatique, un algorithme d'apprentissage incrémental ou incrémentiel est un algorithme d'apprentissage qui a la particularité d'être online, c'est-à-dire qui apprend à partir de données reçues au fur et à mesure du temps. À chaque incrément il reçoit des données d'entrées et un résultat, l'algorithme calcule alors une amélioration du calcul fait pour prédire le résultat à partir des données d'entrées.
Apprentissage automatiqueL'apprentissage automatique (en anglais : machine learning, « apprentissage machine »), apprentissage artificiel ou apprentissage statistique est un champ d'étude de l'intelligence artificielle qui se fonde sur des approches mathématiques et statistiques pour donner aux ordinateurs la capacité d'« apprendre » à partir de données, c'est-à-dire d'améliorer leurs performances à résoudre des tâches sans être explicitement programmés pour chacune. Plus largement, il concerne la conception, l'analyse, l'optimisation, le développement et l'implémentation de telles méthodes.
Véhicule hybrideUn véhicule hybride est un véhicule faisant appel à plusieurs sources d'énergie distinctes pour se mouvoir. Les véhicules hybrides combinent plusieurs sources d'énergie dont souvent l'une est thermique et l'autre électrique. Le principe global très simplifié de ce type de motorisation consiste à profiter des avantages de chaque type de moteur en minimisant leurs inconvénients. Quatre architectures d'hybridation sont possibles : En série : le moteur thermique entraîne un alternateur sans fournir directement de couple à l'essieu, l'alternateur fournissant l’électricité à un moteur électrique.
Machine à vecteurs de supportLes machines à vecteurs de support ou séparateurs à vaste marge (en anglais support-vector machine, SVM) sont un ensemble de techniques d'apprentissage supervisé destinées à résoudre des problèmes de discrimination et de régression. Les SVM sont une généralisation des classifieurs linéaires. Les séparateurs à vaste marge ont été développés dans les années 1990 à partir des considérations théoriques de Vladimir Vapnik sur le développement d'une théorie statistique de l'apprentissage : la théorie de Vapnik-Tchervonenkis.
Véhicule hybride rechargeablevignette|Une Audi A1 rechargeable au salon iMobility 2012 à Stuttgart. Un véhicule hybride rechargeable (VHR) est un véhicule hybride électrique dont la batterie de traction est conçue pour être chargée par branchement à une source d'énergie extérieure. Deux catégories de tels véhicules existent : PHEV (de l'anglais « Plug-in Hybrid Electric Vehicle ») quand les deux motorisations agissent de concert pour animer le véhicule, ou EREV (de l'anglais « Extended Range Electric Vehicles ») quand seul le moteur électrique est connecté aux roues, le moteur thermique ne fournissant de la puissance à un générateur d'électricité que lorsque la batterie d'accumulateurs a besoin d’être rechargée.
École de Copenhague (physique)vignette|Interprétation de Copenhague dans l'expérience de pensée du chat de Schrödinger : lors d'une désintégration radioactive, il se produit une ramification de l'état. Cependant, selon un principe aléatoire, l'une des deux branches s'effondre immédiatement après que la cohérence entre les états ait suffisamment diminué, par exemple à la suite d'une mesure. L’école de Copenhague ou interprétation de Copenhague est un courant de pensée qui donne une interprétation cohérente de la mécanique quantique.
Apprentissage superviséL'apprentissage supervisé (supervised learning en anglais) est une tâche d'apprentissage automatique consistant à apprendre une fonction de prédiction à partir d'exemples annotés, au contraire de l'apprentissage non supervisé. On distingue les problèmes de régression des problèmes de classement. Ainsi, on considère que les problèmes de prédiction d'une variable quantitative sont des problèmes de régression tandis que les problèmes de prédiction d'une variable qualitative sont des problèmes de classification.
Activity recognitionActivity recognition aims to recognize the actions and goals of one or more agents from a series of observations on the agents' actions and the environmental conditions. Since the 1980s, this research field has captured the attention of several computer science communities due to its strength in providing personalized support for many different applications and its connection to many different fields of study such as medicine, human-computer interaction, or sociology.
Many-minds interpretationThe many-minds interpretation of quantum mechanics extends the many-worlds interpretation by proposing that the distinction between worlds should be made at the level of the mind of an individual observer. The concept was first introduced in 1970 by H. Dieter Zeh as a variant of the Hugh Everett interpretation in connection with quantum decoherence, and later (in 1981) explicitly called a many or multi-consciousness interpretation. The name many-minds interpretation was first used by David Albert and Barry Loewer in 1988.
Interprétation de la mécanique quantiqueUne interprétation de la mécanique quantique est une tentative d'explication de la façon dont la théorie mathématique de la mécanique quantique « correspond » à la réalité. Bien que la mécanique quantique ait fait l'objet de démonstrations rigoureuses dans une gamme extraordinairement large d'expériences (aucune prédiction de la mécanique quantique n'a été contredite par l'expérience), il existe un certain nombre d'écoles de pensée concurrentes sur son interprétation.