Conditional Gradient Methods via Stochastic Path-Integrated Differential Estimator
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
We present a strikingly simple proof that two rules are sufficient to automate gradient descent: 1) don’t increase the stepsize too fast and 2) don’t overstep the local curvature. No need for functional values, no line search, no information about the func ...
This work studies multi-agent sharing optimization problems with the objective function being the sum of smooth local functions plus a convex (possibly non-smooth) function coupling all agents. This scenario arises in many machine learning and engineering ...
Many important problems in contemporary machine learning involve solving highly non- convex problems in sampling, optimization, or games. The absence of convexity poses significant challenges to convergence analysis of most training algorithms, and in some ...
The problem of allocating the closed-loop poles of linear systems in specific regions of the complex plane defined by discrete time-domain requirements is addressed. The resulting non-convex set is inner-approximated by a convex region described with linea ...
We develop a primal-dual convex minimization framework to solve a class of stochastic convex three-composite problem with a linear operator. We consider the cases where the problem is both convex and strongly convex and analyze the convergence of the propo ...
In modern-data analysis applications, the abundance of data makes extracting meaningful information from it challenging, in terms of computation, storage, and interpretability. In this setting, exploiting sparsity in data has been essential to the developm ...
We study convex optimization problems that feature low-rank matrix solutions. In such scenarios, non-convex methods offer significant advantages over convex methods due to their lower space complexity as well as faster convergence speed. Moreover, many of ...
A broad class of convex optimization problems can be formulated as a semidefinite program (SDP), minimization of a convex function over the positive-semidefinite cone subject to some affine constraints. The majority of classical SDP solvers are designed fo ...
Combining diffusion strategies with complementary properties enables enhanced performance when they can be run simultaneously. In this article, we first propose two schemes for the convex combination of two diffusion strategies, namely, the power-normalize ...
In this paper, we analyze the recently proposed stochastic primal-dual hybrid gradient (SPDHG) algorithm and provide new theoretical results. In particular, we prove almost sure convergence of the iterates to a solution and linear convergence with standard ...