Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?
Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur Graph Search.
We present a strikingly simple proof that two rules are sufficient to automate gradient descent: 1) don’t increase the stepsize too fast and 2) don’t overstep the local curvature. No need for functional values, no line search, no information about the function except for the gradients. By following these rules, you get a method adaptive to the local geometry, with convergence guarantees depending only on the smoothness in a neighborhood of a solution. Given that the problem is convex, our method converges even if the global smoothness constant is infinity. As an illustration, it can minimize arbitrary continuously twice differentiable convex function. We examine its performance on a range of convex and nonconvex problems, including logistic regression and matrix factorization.