Procrustes Metrics and Optimal Transport for Covariance Operators
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
We consider the problem of comparing several samples of stochastic processes with respect to their second-order structure, and describing the main modes of variation in this second order structure, if present. These tasks can be seen as an Analysis of Vari ...
Covariance estimation is ubiquitous in functional data analysis. Yet, the case of functional observations over multidimensional domains introduces computational and statistical challenges, rendering the standard methods effectively inapplicable. To address ...
WILEY2022
How can we discern whether the covariance operator of a stochastic pro-cess is of reduced rank, and if so, what its precise rank is? And how can we do so at a given level of confidence? This question is central to a great deal of methods for functional dat ...
INST MATHEMATICAL STATISTICS-IMS2022
, ,
Aims. We investigate the contribution of shot-noise and sample variance to uncertainties in the cosmological parameter constraints inferred from cluster number counts, in the context of the Euclid survey. Methods. By analysing 1000 Euclid-like light cones, ...
Is it possible to detect if the sample paths of a stochastic process almost surely admit a finite expansion with respect to some/any basis? The determination is to be made on the basis of a finite collection of discretely/noisily observed sample paths. We ...
We prove that under certain mild moment and continuity assumptions, the d-dimensional continuum Gaussian free field is the only stochastic process satisfying the usual domain Markov property and a scaling assumption. Our proof is based on a decomposition o ...
We analyze about 200 naturally occurring networks with distinct dynamical origins to formally test whether the commonly assumed hypothesis of an underlying scale-free structure is generally viable. This has recently been questioned on the basis of statisti ...
We present an extended validation of semi-analytical, semi-empirical covariance matrices for the two-point correlation function (2PCF) on simulated catalogs representative of luminous red galaxies (LRGs) data collected during the initial 2 months of operat ...
In this thesis, we propose to formally derive amplitude equations governing the weakly nonlinear evolution of non-normal dynamical systems, when they respond to harmonic or stochastic forcing, or to an initial condition. This approach reconciles the non-mo ...
This thesis concerns the theory of positive-definite completions and its mutually beneficial connections to the statistics of function-valued or continuously-indexed random processes, better known as functional data analysis. In particular, it dwells upon ...