Models of neural computationModels of neural computation are attempts to elucidate, in an abstract and mathematical fashion, the core principles that underlie information processing in biological nervous systems, or functional components thereof. This article aims to provide an overview of the most definitive models of neuro-biological computation as well as the tools commonly used to construct and analyze them.
Upper motor neuronUpper motor neurons (UMNs) is a term introduced by William Gowers in 1886. They are found in the cerebral cortex and brainstem and carry information down to activate interneurons and lower motor neurons, which in turn directly signal muscles to contract or relax. UMNs in the cerebral cortex are the main source of voluntary movement. They are the larger pyramidal cells in the cerebral cortex. There is a type of giant pyramidal cell called Betz cells and are found just below the surface of the cerebral cortex within layer V of the primary motor cortex.
Biologie computationnelleLa biologie computationnelle (parfois appelée biologie numérique) est une branche de la biologie qui implique le développement et l'application de méthodes d'analyse de données, d'approches théoriques, de modélisation mathématique et de techniques de simulation computationnelle pour étudier des systèmes biologiques, écologiques, comportementaux et sociaux. Le domaine est largement défini et comprend des fondements en biologie, mathématiques appliquées, statistiques, biochimie, chimie, biophysique, biologie moléculaire, génétique, génomique, informatique et évolution.
Fuseau neuromusculaireLe fuseau neuromusculaire est un mécanorécepteur constitué de fibres musculaires modifiées. Disposé parallèlement aux fibres du muscle, il est sensible à l'allongement de celui-ci, et traduit un stimulus mécanique en un message nerveux. Ces fuseaux sont des récepteurs sensoriels. Ils jouent donc un rôle important dans la proprioception statique, ainsi que dans la kinesthésie. Ils sont également impliqués dans le réflexe myotatique : leur rôle est alors d'augmenter le niveau de contraction du muscle en réponse à son propre étirement.
Apprentissage profondL'apprentissage profond ou apprentissage en profondeur (en anglais : deep learning, deep structured learning, hierarchical learning) est un sous-domaine de l’intelligence artificielle qui utilise des réseaux neuronaux pour résoudre des tâches complexes grâce à des architectures articulées de différentes transformations non linéaires. Ces techniques ont permis des progrès importants et rapides dans les domaines de l'analyse du signal sonore ou visuel et notamment de la reconnaissance faciale, de la reconnaissance vocale, de la vision par ordinateur, du traitement automatisé du langage.
Memory and agingAge-related memory loss, sometimes described as "normal aging" (also spelled "ageing" in British English), is qualitatively different from memory loss associated with types of dementia such as Alzheimer's disease, and is believed to have a different brain mechanism. Mild cognitive impairment Mild cognitive impairment (MCI) is a condition in which people face memory problems more often than that of the average person their age. These symptoms, however, do not prevent them from carrying out normal activities and are not as severe as the symptoms for Alzheimer's disease (AD).
Transfert de connaissancesvignette|Logo illustratif de The Noun Project. Le transfert de connaissances ou compétences, dans les domaines du développement et de l’apprentissage de l'organisation, est le problème pratique de la transmission de données d’une partie de l’organisation à une autre (ou aux autres) partie(s). Le transfert de connaissances ne recouvre qu'une partie de la problématique du transfert de compétences pour les structures.
Système nerveuxthumb|Le système nerveux humain. Le système nerveux (ou système neuronal) est un système biologique animal responsable de la coordination des actions avec l'environnement extérieur et de la communication rapide entre les différentes parties du corps. Les êtres vivants dotés d'un système nerveux sont nommés eumétazoaires. Il exerce un contrôle sur l'ensemble du corps qui se traduit par des actes volontaires ou involontaires, et des sensations qui sont conscientes ou inconscientes.
Physique numériqueLa physique numérique (ou parfois physique informatique) est l'étude et l'implémentation d'algorithmes numériques dans le but de résoudre des problèmes physiques pour lesquels une théorie existe déjà. Elle est souvent considérée comme une sous-discipline de la physique théorique mais certains la considèrent comme une branche intermédiaire entre la physique théorique et la physique expérimentale. En général, les physiciens définissent un système et son évolution grâce à des formules mathématiques précises.
Système de récompenseLe système de récompense / renforcement aussi appelé système hédonique, est un système fonctionnel fondamental des mammifères, situé dans le cerveau, le long du faisceau médian du télencéphale. Ce système de « récompenses » est indispensable à la survie, car il fournit la motivation nécessaire à la réalisation d'actions ou de comportements adaptés, permettant de préserver l'individu et l'espèce (prise de risque nécessaire à la survie, recherche de nourriture, reproduction, évitement des dangers, etc.).