Microneurography as a tool to develop decoding algorithms for peripheral neuro-controlled hand prostheses
Publications associées (36)
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
This thesis presents an extensive exploration of neuroelectronic interfaces, focusing on microfabrication, in silico modeling, and their applications in designing and fabricating devices for neural interfacing. The research encompasses both peripheral nerv ...
One of the most important goals in neuroscience research has always been to understand how animals control their behavior. However, the long focus on the role of brain neurons in behavioral control might be missing the full story. In fact, brain-wide fluct ...
Transient electronics enabling devices to safely disappear in the environment can be applied not only in green electronics, but also in bioelectronic medicine. Neural implants able to degrade harmlessly inside the body eliminate the need for removal surger ...
High neural selectivity is an important indicator of how well a neural electrode will perform in a clinical setup. Among other factors, neural selectivity of an electrode strongly depends on its implant location. Today, the neural selectivity is evaluated ...
Over the last decades, implantable neural interfaces have been extensively explored and effectively deployed to address neurological and mental health disorders. The existing solutions present several limitations. Firstly, the physical size of the implanta ...
Technological progress in materials science and microengineering along with new discoveries in neuroscience have contributed to restore lost or impaired sensory functions by closely interfacing with the nervous system. Electronic devices have begun to be i ...
Objective. Recent results have shown the potentials of neural interfaces to provide sensory feedback to subjects with limb amputation increasing prosthesis usability. However, their advantages for decoding motor control signals over current methods based o ...
Implantable neural interfaces are an emerging concept which is revolutionizing various domains of medicine and rehabilitation. However, the long-term efficiency and reliability of these devices is often limited, mainly attributed to the fundamental differe ...
In the last decades, clinical neuroscience found a novel ally in neurotechnologies, devices able to record and stimulate electrical activity in the nervous system. These technologies improved the ability to diagnose and treat neural disorders. Neurotechnol ...
Over the last decade, Low Intensity Focused Ultrasound Stimulation (LIFUS) has emerged as an attractive technology to modulate the activity of deep neural targets without invasive procedures. However, the underlying mechanisms by which ultrasonic waves can ...